Skip to main content
Log in

Zinc(II) complexes with Schiff bases derived from ethylenediamine and salicylaldehyde: the synthesis and photoluminescent properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The effect of the nature of organic ligands and complex formation on the photoluminescent characteristics (relative quantum yield, excited-state lifetime) and thermal stability of tetradentate Schiff bases (H2L), derivatives of salicylaldehyde (H2(SAL)1, H2(SAL)2), o-vanillin (H2(MO)1, H2(MO)2) with ethylenediamine and o-phenylenediamine, and their zinc(II) complexes was studied. Zinc(II) complexes were synthesized by the reaction of H2L with Zn(AcO)2·2H2O in MeOH at room temperature or under reflux. In the case of H2L = H2(SAL)2, H2(MO)1, H2(MO)2, complexes of the composition ZnL·H2O were isolated irrespective of the temperature. For H2L = H2(SAL)1, the reaction results in Zn(SAL)1·H2O at room temperature and in anhydrous dimeric complex [Zn(SAL)1]2 under reflux. Density functional calculations of H2L and ZnL confirmed that (1) luminescence of these compounds is due to the π-π* transition between orbitals of the organic ligand and (2) enhancement of conjugation of the chain and introduction of electron-donating substituents lead to a decrease of the energy gap and, there-fore, to a bathochromic shift of the emission maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Tanaka, S. Tokito, Y. Taga, A. Okada, J. Mater. Chem., 1998, 8, 1999.

    Article  CAS  Google Scholar 

  2. S. Wang, Coord. Chem. Rev., 2001, 251, 79.

    Article  Google Scholar 

  3. R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev., 2006, 250, 2093.

    Article  CAS  Google Scholar 

  4. A. V. Metelitsa, A. S. Burlov, S. O. Bezuglyi, I. G. Borodkina, V. A. Bren’, A. D. Garnovskii, V. I. Minkin, Coordinats. Khim., 2006, 32, 894 [Russ. J. Coord. Chem., 2006, 32, 858 (Engl. Transl.)].

    Google Scholar 

  5. S.-L. Zheng, X.-M. Chen, Aust. J. Chem., 2004, 57, 703.

    Article  CAS  Google Scholar 

  6. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304.

    Article  CAS  Google Scholar 

  7. Y. W. Shi, M.-M. Shi, J.-C. Huang, H.-Z. Chen, M. Wang, X.-D. Liu, Y.-G. Ma, H. Xu, B. Yang, Chem. Commun., 2006, 1941.

  8. C. Pérez-Bolivar, V. A. Montes, P. Anzenbacher, Inorg. Chem., 2006, 45, 9610.

    Article  Google Scholar 

  9. R. Pohl, P. Anzenbacher, Org. Lett., 2003, 5, 2769.

    Article  CAS  Google Scholar 

  10. S. Mizukami, H. Houjou, K. Sugaya, E. Koyama, H. Tokuhisa, T. Sasaki, M. Kanesato, Chem. Mater., 2005, 17, 50.

    Article  CAS  Google Scholar 

  11. M. E. Germain, T. R. Vargo, P. G. Khalifah, M. J. Knapp, Inorg. Chem., 2007, 46, 4422.

    Article  CAS  Google Scholar 

  12. W.-K. Lo, W.-K. Wong, W.-Y. Wong, J. Guo, K.-T. Yeung, Y.-K. Cheng, X. Yang, R. A. Jones, Inorg. Chem., 2006, 45, 9315.

    Article  CAS  Google Scholar 

  13. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev., 2007, 107, 926; Y. Shirota, H. Kageyama, Chem. Rev., 2007, 107, 953.

    Article  CAS  Google Scholar 

  14. P. G. Gozzi, L. S. Dolci, A. Garelli, M. Montalti, L. Prodi, N. Zaccheroni, New. J. Chem., 2003, 27, 692.

    Article  Google Scholar 

  15. T. Sano, Y. Nishio, Y. Hamada, H. Takahash, T. Usuki, K. Shibata, J. Mater. Chem., 2000, 10, 157.

    Article  CAS  Google Scholar 

  16. S. H. Hwang, P. Wang, C. N. Moorefield, J.-Che. Jung, J.-Y. Kim, S.-W. Lee, G. R. Newkome, Macromol. Rapid Commun., 2006, 27, 1809.

    Article  Google Scholar 

  17. N. Yoshida, K. Ichikawa, M. Shiro, J. Chem. Soc., Perkin Trans., 2000, 2, 17.

    Google Scholar 

  18. W. Lu, M. C. W. Chen, K.-K. Cheung, Ch.-M. Che, Organometallics, 2001, 20, 2477.

    Article  CAS  Google Scholar 

  19. H. Schiff, Ann. Suppl., 1864, 3, 43.

    Google Scholar 

  20. M. J. O’Conner, B. O. West, Aust. J. Chem., 1967, 20, 2077.

    Google Scholar 

  21. G. E. Bately, D. P. Graddon, Aust. J. Chem., 1967, 20, 885.

    Article  Google Scholar 

  22. C. de Mello Donegá, S. A. Junior, G. F. de Sa, Chem. Commun., 1996, 1199.

  23. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  24. P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.

    Article  CAS  Google Scholar 

  25. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 1991, 113, 4917.

    Article  CAS  Google Scholar 

  26. P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 2000, 122, 1045.

    Article  Google Scholar 

  27. D. Hall, F. H. Moore, J. Chem. Soc. (A), 1966, 1822.

  28. M. Odoko, N. Tsuchida, N. Okabe, Acta Crystallogr., 2006, E62, m708.

    Google Scholar 

  29. A. de Bettencourt-Dias, Dalton Trans., 2007, 2229.

  30. W.-Y. Wong, G.-L. Lu, L. Liu, J.-X. Shi, J. Lin, Eur. J. Inorg. Chem., 2004, 2066.

  31. S.-L. Zheng, J.-P. Zhang, X.-M. Chen, Z.-L. Huang, Z.-Y. Lin, W.-T. Wong, Chem. Eur. J., 2003, 9, 3888.

    Article  CAS  Google Scholar 

  32. T. Sekikawa, T. Kobayashi, T. Inabe, J. Phys. Chem. B, 1997, 101, 10645.

    Article  CAS  Google Scholar 

  33. H. Joshi, F. S. Kamounah, C. Gooijer, G. Van der Zwan, L. Antonor, J. Photochem. Photobiol. A: Chem., 2002, 152, 183.

    Article  CAS  Google Scholar 

  34. M. Ziółek, J. Kubicki, A. Maciejewski, R. Nasręcki, A. Grabowska, Chem. Phys. Lett., 2003, 369, 80.

    Article  Google Scholar 

  35. K. Amimoto, T. Kawato, J. Photochem. Photobiol. C: Photochem. Rev., 2005, 6, 207.

    Article  CAS  Google Scholar 

  36. D. LeGourriérec, V. A. Kharlanov, R. G. Brown, W. Rettig, J. Photochem. Photobiol. A: Chem., 2000, 130, 101.

    Article  Google Scholar 

  37. K. Ueno, A. E. Martell, J. Phys. Chem., 1956, 60, 1270.

    Article  CAS  Google Scholar 

  38. A. Filarowski, J. Phys. Org. Chem., 2005, 18, 686.

    Article  CAS  Google Scholar 

  39. F. Liang, J. Chen, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, J. Mater. Chem., 2003, 13, 1392.

    Article  CAS  Google Scholar 

  40. S.-M. Yue, H.-B. Xu, J.-F. Ma, Z.-M. Su, Y.-H. Kan, H.-J. Zhang, Polyhedron, 2006, 25, 635.

    Article  CAS  Google Scholar 

  41. Y.-P. Tong, S.-L. Zheng, X.-M. Chen, J. Mol. Struct., 2007, 826, 104.

    Article  CAS  Google Scholar 

  42. Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Inorg. Chem., 2005, 44, 4270.

    Article  CAS  Google Scholar 

  43. Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Eur. J. Inorg. Chem., 2005, 3734.

  44. S.-L. Zheng, J.-H. Yang, X.-L. Yu, X.-M. Chen, W.-T. Wong, Inorg. Chem., 2004, 43, 830.

    Article  CAS  Google Scholar 

  45. D. Cunningham, K. Giligan, M. Hannon, C. Kelly, P. McArdle, A. O’Malley, Organometallics, 2004, 23, 984.

    Article  CAS  Google Scholar 

  46. M. E. Germain, T. R. Vargo, P. G. Khalifah, M. J. Knapp, Inorg. Chem., 2007, 46, 4422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kotova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1846–1855, September, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotova, O.V., Eliseeva, S.V., Averjushkin, A.S. et al. Zinc(II) complexes with Schiff bases derived from ethylenediamine and salicylaldehyde: the synthesis and photoluminescent properties. Russ Chem Bull 57, 1880–1889 (2008). https://doi.org/10.1007/s11172-008-0254-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-008-0254-x

Key words

Navigation