Skip to main content
Log in

The Effects of Invention and Recontextualization on Representing and Reasoning with Trees of Life

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Biologists use tree diagrams to illustrate phylogenetic relationships among species. However, both novices and experts are prone to misinterpret this notational form. A difficulty with reasoning with cladograms is that intuitive narrative conceptions of evolution as a linear progression interfere with perceiving the hierarchical relationships that tree diagrams are intended to convey. We challenge the use of standard cladograms to teach phylogenetic reasoning and attempt to disentangle the effects of content beliefs, conceptual metaphors, and visual structure. We explain how and why students misinterpret cladograms and investigate the effects of alternative, more intuitive representations and approaches. Through clinical interviews with 24 undergraduate students. Study 1 describes students’ invented representations for depicting the concept of relatedness and investigates the impacts of recontextualizing their representational activities within non-evolutionary contexts. Study 2 examines the effects on students’ reasoning with the standard cladogram after they first invent a diagram of their own. Findings from our mixed quantitative and qualitative analyses display the range of representational resources that students bring to the task of reasoning about relatedness. They suggest potential value in building upon such representations when teaching novices to reason about phylogenies. We observed that the quality of students’ reasoning differed depending on whether students invented a representation, what kind they invented, and in what context. While some findings are promising, others reaffirm the powerful influence of Gestalt perceptual processes on students’ misinterpretations of these difficult, but critical scientific diagrams. We end by discussing implications for instructors and designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abraham-Silver, L., & Kisiel, J. (2008). Comparing visitors’ conceptions of evolution: Examining understanding outside the United States. Visitor Studies, 11(1), 41–54.

  • Acher, A., Arcà, M., & Sanmartí, N. (2007). Modeling as a teaching learning process for understanding materials: a case study in primary education. Science Education, 91(3), 398–418.

    Google Scholar 

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131–152.

    Google Scholar 

  • Ainsworth, S. & Saffer, J. (2013). Can children read evolutionary trees?.Merrill-Palmer Quarterly, 59(2), 221–247. http://muse.jhu.edu/journals/merrill-palmer_quarterly/v059/59.2.ainsworth.html

  • Barwise, J., & Etchemendy, J. (1991). Visual information and valid reasoning. In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 9–24). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Baum, D. A., & Offner, S. (2008). Phylogenics & tree-thinking. American Biology Teacher, 70(4), 222–229.

  • Baum, D. A., Smith, S. D., & Donovan, S. S. S. (2005). The tree-thinking challenge. [Perspective]. Science, 310, 979–980.

    Google Scholar 

  • Beth, E., & Piaget, J. (1966). Mathematical epistemology and psychology. Dordrecht, The Netherlands: D. Reidel.

    Google Scholar 

  • Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27(5), 415–427.

    Google Scholar 

  • Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive Research: Principles and Implications, 1(1), 27.

    Google Scholar 

  • Carswell, C. M., & Wickens, C. D. (1987). Information integration and the object display: an interaction of task demands and display superiority. Ergonomics, 30, 511–527.

    Google Scholar 

  • Catley, K., & Novick, L. (2008). Seeing the wood for the trees: An analysis of evolutionary diagrams in biology textbooks. BioScience, 58(10), 976–987.

  • Catley, K., Novick, L., & Shade, C. (2009). Reinforcing macroevolutionary misconceptions: Students’ interpretations of textbook diagrams. California: Paper presented at the NARST.

    Google Scholar 

  • Crandall, K. A. (1999). The evolution of HIV. Baltimore: Johns Hopkins Univeristy Press.

    Google Scholar 

  • Daston, L. (2007). Objectivity. Cambridge, MA: MIT Press.

    Google Scholar 

  • de Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model in secondary school students’ solutions of word problems involving length and area of similar plane figures. Educational Studies in Mathematics, 35(1), 65–83.

    Google Scholar 

  • Demastes, S. S., Settlage Jr., J., & Good, R. (1995). Students’ conceptions of natural selection and its role in evolution: Cases of replication and comparison. Journal of Research in Science Teaching, 32(5), 535–550.

    Google Scholar 

  • diSessa, A. A. (2004). Metarepresentation: native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.

    Google Scholar 

  • diSessa, A. A., & Sherin, B. L. (2000). Meta-representation: an introduction. The Journal of Mathematical Behavior, 19(4), 385–398. https://doi.org/10.1016/S0732-3123(01)00051-7.

    Article  Google Scholar 

  • Dees, J., & Momsen, J. L. (2016). Student construction of phylogenetic trees in an introductory biology course. Evolution: Education and Outreach, 9(1), 3.

    Google Scholar 

  • Dees, J., Freiermuth, D., & Momsen, J. L. (2017). Effects of phylogenetic tree style on student comprehension in an introductory biology course. The American Biology Teacher, 79(9), 729–737.

    Google Scholar 

  • Dees, J., Bussard, C., & Momsen, J. L. (2018). Further effects of phylogenetic tree style on student comprehension in an introductory biology course. CBE—Life Sciences Education, 17(2), ar17.

    Google Scholar 

  • Dolin, J. (2001). Representational forms in physics. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Bisdikian, G. Fassoulopoulos, E. Hatzikraniotis, & E. Kallery (Eds.), Science education research in the knowledge‐based society. Proceedings of the Third International Conference of the ESERA (pp. 359–361). Thessaloniki, Greece: Aristotle University of Thessaloniki.

    Google Scholar 

  • Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In Epistemological foundations of mathematical experience (pp. 160–202). New York, NY: Springer.

    Google Scholar 

  • Eddy, S. L., Crowe, A. J., Wenderoth, M. P., & Freeman, S. (2013). How should we teach tree-thinking? An experimental test of two hypotheses. Evolution: Education and Outreach, 6(1), 13 http://www.evolution-outreach.com/content/6/1/13/.

    Google Scholar 

  • Edens, K. M., & Potter, E. (2003). Using descriptive drawings as a conceptual change strategy in elementary science. School Science and Mathematics, 103(3), 135–144.c.

    Google Scholar 

  • Elkins, J. (1997). The object stares back: on the nature of seeing. New York: Houghton Mifflin Harcourt.

    Google Scholar 

  • Essen, G. V., & Hamaker, C. (1990). Using self-generated drawings to solve arithmetic word problems. The Journal of Educational Research, 83(6), 301–312.

    Google Scholar 

  • Evans, E. M., Frazier, B., Hazel, A., Kiss, A., Lane, J. D., Spiegel, A. & Diamond, J. (2010). Tree thinking: Do pictorial representations of phylogenetic relationships help or hinder museum visitors’ understanding of evolution. In Abstract of talk presented at the Tree of Life Conference, Carnegie Museum of Natural History (August 2010).

  • Frankel, F. (2005). Translating science into pictures: A powerful learning tool. Invention and Impact: Building Excellence in Undergraduate Science, Technology, Engineering, and Mathematics (STEM) Education (pp. 155–158). Washington, DC: AAAS.

    Google Scholar 

  • Freeman, S. (2011). Biological science (4th ed.). San Francisco, CA: Benjamin-Cummings Publishing Company.

  • Galli, L. M. G., & Meinardi, E. N. (2011). The role of teleological thinking in learning the Darwinian model of evolution. Evolution: Education and Outreach, 4(1), 145–152.

    Google Scholar 

  • Gaver, W. W. (1991). Technology affordances. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through technology table of contents, New Orleans, Louisiana, United States.

  • Gendron, R. P. (2000). The classification and evaluation of caminalcules. American BiologyTeacher, 62(8), 570(577).

    Google Scholar 

  • Gibson, J. J. (1986). The theory of affordances the ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Gil, J., Howse, J. & Kent, S. (1999). Formalizing spider diagrams. In Visual Languages, 1999. Proceedings. 1999 IEEE Symposium on (pp. 130–137). IEEE.

  • Giusti, E., & Scott, M. (2006). Yale peabody museum of natural history: Tree of life visitor study. New Haven, CT: Yale Peabody Museum.

  • Glaser, B. & Strauss, A.(1967).The discovery of grounded theory. Chicago: Aldine.

  • Gontier, N. (2011). Depicting the tree of life: the philosophical and historical roots of evolutionary tree diagrams. Evolution: Education and Outreach, 4(3), 515–538.

    Google Scholar 

  • Gould, S. J. (1995). Ladders and cones: Constraining evolution by canonical icons. In R. B. Silvers (Ed.), Hidden histories of science. New York: New York Review of Books.

    Google Scholar 

  • Gregory, T. (2008). Understanding evolutionary trees. Evolution: Education and Outreach, 1(2), 121–137.

    Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.

    Google Scholar 

  • Guthrie, J. T., Weber, S., & Kimmerly, N. (1993). Searching documents: cognitive processes and deficits in understanding graphs, tables, and illustrations. Contemporary Educational Psychology, 18(2), 186–221.

    Google Scholar 

  • Hall, V. C., Bailey, J., & Tillman, C. (1997). Can student-generated illustrations be worth ten thousand words? Journal of Educational Psychology, 89(4), 677–681.

    Google Scholar 

  • Halverson, K. L. (2010). Using pipe cleaners to bring the tree of life to life. American Biology Teacher, 74, 223–224.

    Google Scholar 

  • Halverson, K. L., Pires, C. J., & Abell, S. K. (2011). Exploring the complexity of tree thinking expertise in an undergraduate systematics course. Science Education, 95, 794–823.

    Google Scholar 

  • Halverson, K. L., Boyce, C. J., & Maroo, J. D. (2013). Order matters: pre-assessments and student generated representations. Evolution: Education and Outreach, 6(1), 24 http://www.evolution-outreach.com/content/6/1/24/.

    Google Scholar 

  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–120). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Harel, G., & Kaput, J. (2002). The role of conceptual entities and their symbols in building advanced mathematical concepts. In Advanced mathematical thinking (pp. 82–94). Dordrecht: Springer.

  • Hendry, A. P., Lohmann, L. G., Conti, E., Cracraft, J., Crandall, K. A., Faith, D. P., et al. (2010). Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution: International Journal of Organic Evolution, 64(5), 1517–1528.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Translated by DD Davis et R. Zangerl. University of Illinois Press. Urbana, Chicago, London.

  • Horn, M. S., Phillips, B. C., Evans, E. M., Block, F., Diamond, J., & Shen, C. (2016). Visualizing biological data in museums: visitor learning with an interactive tree of life exhibit. Journal of Research in Science Teaching, 53(6), 895–918.

    Google Scholar 

  • Hubber, P., Tytler, R., & Chittleborough, G. (2018). Representation construction: A guided inquiry approach for science education. In STEM Education in the Junior Secondary (pp. 57–89). Springer, Singapore.

  • Julius, M. L., & Schoenfuss, H. L. (2006). Phylogenetic reconstruction as a broadly applicable teaching tool in the biology classroom. Journal of College Science Teaching, 35(7), 40–45.

    Google Scholar 

  • Karmiloff‐Smith, A. (1992). Beyond modularity. In A developmental perspective on cognitive science. Boston, MA: MIT Press.

    Google Scholar 

  • Kemp, T. (1999). Fossils and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Kestler, H. A., Müller, A., Gress, T. M., & Buchholz, M. (2004). Generalized Venn diagrams: a new method of visualizing complex genetic set relations. Bioinformatics, 21(8), 1592–1595.

    Google Scholar 

  • Kieran, C. (1991). A procedural-structural perspective on algebra research. In PME conference (Vol. 2, pp. 245- 253). The Program Committee of the 18th PME Conference.

  • Köse, S. (2008). Diagnosing student misconceptions: using drawings as a research method. World Applied Sciences Journal, 3(2), 283–293.

    Google Scholar 

  • Kosslyn, S. M. (1994). Elements of graph design. New York: Freeman.

    Google Scholar 

  • Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 179–211.

  • Landau, M. (1997). Human evolution as narrative. In L. P. Hinchman & S. Hinchman (Eds.), Memory, identity, community: the idea of narrative in the human sciences. Albany: State University of New York Press.

    Google Scholar 

  • Landy, D., & Goldstone, R. L. (2007). Grounding symbol structures in space: Formal notations as diagrams. Paper presented at the The 29th Annual Conference of the Cognitive Science Society, Nashville, TN.

  • Lansing, K. M. (1981). The effect of drawing on the development of mental representations. Studies in Art Education, 22(3), 15–23.

    Google Scholar 

  • Lansing, K. M. (1984). The effect of drawing on the development of mental representations: a continuing study. Studies in Art Education, 25(3), 167–175.

    Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Google Scholar 

  • Larreamendy-Joerns, J. (1996). Learning science from text: Effect of theory and examples on students’ ability to construct explanations in evolutionary biology. Doctoral dissertation. University of Pittsburgh. Pittsburgh.

  • Larreamendy-Joerns, J., & Ohlsson, S. (1995). Evidence for explanatory patterns in evolutionary biology. In J. D. Moore & J. F. Kehman (Eds.), Proceedings of the 17th Annual Conference of the Cognitive Science Society (pp. 637–643). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Latour, B., Lynch, M., & Woolgar, S. (1990). Representation in scientific practice. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lehrer, R., Schauble, L., Carpenter, S., & Penner, D. (2000). The interrelated development of inscriptions and conceptual understanding. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: perspectives on discourse, tools, and instructional design (pp. 325–360). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Lemke, J. (2004). The literacies of science. In Saul, E.W. (Ed.), Crossing borders in literacy and science instruction: Perspectives on theory and practice (pp. 33–47). Newark, DE: International Reading Association and National Science Teachers Association.

  • Linn, M. C., Chang, H. Y., Chiu, J., Zhang, H., & McElhaney, K. (2010). Can desirable difficulties overcome deceptive clarity in scientific visualizations. Successful remembering and successful forgetting: A Festschrift in honor of Robert A. Bjork, 239–262.

  • Logie, H. R. (2001). Working memory: A mental space for design and discovery. In S. J. Gero, B. Tversky, & T. Purcell (Eds.), Visual and spatial reasoning in design II (pp. 223–236). University of Sydney: Key Centre of Design Computing and Cognition.

  • Lynch, M. (1990). The externalized retina: selection and mathematization in the visual documentation of objects in the life sciences. In M.Lynch and S.Woolgar (Eds.), Representation in Scientific Practice. Cambridge, MA: MIT Press.

  • MacDonald, T. (2010). Communicating Phylogeny: Evolutionary tree diagrams in museums. Paper presented at the National Association of Research in Science Teaching Annual Conference, Philadelphia, PA.

  • MacDonald, T., & Wiley, E. O. (2012). Communicating phylogeny: evolutionary tree diagrams in museums. Evolution: Education and Outreach, 5(1), 14–28 http://evolution.berkeley.edu/UToL/macdonald_NARST2010.pdf.

    Google Scholar 

  • Mace, G. M., Gittleman, J. L., & Purvis, A. (2003). Preserving the tree of life. Science, 300(5626), 1707–1709.

  • MacFadden, B. J., Dunckel, B. A., Ellis, S., Dierking, L. D., Abraham-Silver, L., Kisiel, J. I. M., & Koke, J. (2007). Natural History museum visitors’ understanding of evolution. BioScience, 57(10), 875–882.

  • Matuk, C., & Uttal, D. H. (2011). Narrative spaces in the representation and understanding of evolution. In K. S. Rosengren, S. K. Brem, E. M. Evans, & G. M. Sinatra (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 119–144). Oxford: Oxford University Press.

    Google Scholar 

  • McGuinness, C. (1986). Problem representation: the effects of spatial arrays. Memory and Cognition, 14, 270–280.

    Google Scholar 

  • Meir, E., Perry, J., Herron, J. C., & Kingsolver, J. (2007). College students’ misconceptions about evolutionary trees. The American Biology Teacher, 69(7), e71–e76.

  • Metzker, M. L., Mindell, D. P., Liu, X. M., Ptak, R. G., Gibbs, R. A., & Hillis, D. M. (2002). Molecular evidence of HIV- 1 transmission in a criminal case. Proceedings of the National Academy of Sciences, 99(22), 14292–14297.

    Google Scholar 

  • Morrison, D. A. (2014). Is the tree of life the best metaphor, model, or heuristic for phylogenetics? Systematic Biology, 63(4), 628–638.

    Google Scholar 

  • Nehm, R. H., & Reilly, L. (2007). Biology majors’ knowledge and misconceptions of natural selection. BioScience, 57(3), 263–272. https://doi.org/10.1641/B570311.

  • Nemirovsky, R. & Tierney, C. (2001). Children creating ways to represent changing situations: on the development of homogeneous spaces. Educational Studies in Mathematics, 45(1–3), 67–102.

  • Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks, California: Sage Publications.

    Google Scholar 

  • Norman, D. A. (2002). The design of everyday things. New York: Currency Doubleday.

    Google Scholar 

  • Novick, L. R. (2001). Spatial diagrams: key instruments in the toolbox for thought. In D. L. Medin (Ed.), The psychology of learning and motivation (Vol. 40, pp. 279–325). San Diego: Academic Press.

    Google Scholar 

  • Novick, L. R., & Hurley, S. M. (2001). To matrix, network, or hierarchy: that is the question. Cognitive Psychology, 42(2), 158–216.

    Google Scholar 

  • Novick, L. R., & Catley, K. M. (2006). Interpreting hierarchical structure: Evidence from cladograms in biology. In D. B.-P. e. al (Ed.), Diagrams 2006 (Vol. LNAI 4045, pp. 176- 180). Berlin Heidelburg: Springer-Verlag.

  • Novick, L. R., & Catley, K. M. (2007). Understanding phylogenies in biology: the influence of a gestalt perceptual principle. Journal of Experimental Psychology. Applied, 13, 197–223.

  • Novick, L. R., & Catley, K. M. (2009). Understanding the tree of life: Effects of biology background and cladogram format on tree thinking. San Diego: Paper presented at the Conference of the American Educational Research Association.

  • Novick, L. R., & Catley, K. M. (2012). Assessing students’ understanding of macroevolution: concerns regarding the validity of the MUM. International Journal of Science Education, 34(17), 2679–2703.

  • Novick, L. R., & Catley, K. M. (2013). Reasoning about evolution’s grand patterns: college students’ understanding of the tree of life. American Educational Research Journal, 50(1), 138–177.

    Google Scholar 

  • Novick, L. R., & Catley, K. M. (2016). Fostering 21st-century evolutionary reasoning: teaching tree thinking to introductory biology students. CBE-Life Sciences Education, 15(4), ar66.

    Google Scholar 

  • Novick, L. R., Shade, C. K., & Catley, K. M. (2011). Linear versus branching depictions of evolutionary history: Implications for diagram design. Topics in Cognitive Science, 3(3), 536–559.

    Google Scholar 

  • Novick, L. R., Stull, A. T., & Catley, K. M. (2012). Reading phylogenetic trees: the effects of tree orientation and text processing on comprehension. BioScience, 62(8), 757–764.

    Google Scholar 

  • Novick, L. R., Schreiber, E. G., & Catley, K. M. (2014). Deconstructing evolution education: the relationship between micro-and macroevolution. Journal of Research in Science Teaching, 51(6), 759–788.

    Google Scholar 

  • O’Hara, R. J. (1988). Homage to Clio, or toward an historical philosophy for evolutionary biology. Systematic Zoology, 37(2), 142–155.

    Google Scholar 

  • O’Hara, R. J. (1992). Telling the tree: narrative representation and the study of evolutionary history. Biology and Philosophy, 7, 135–160.

    Google Scholar 

  • O’Hara, R. J. (1996). Mapping the space of time: Temporal representation in the historical sciences. In P. M.T. Ghiselin, G. (Ed.), New perspectives on the history of life (pp. 7–17). California: California Academy of Sciences.

  • O’Hara, R. J. (1997). Population thinking and tree thinking in systematics. Zoologica Scripta, 26(4), 323–329.

    Google Scholar 

  • Ohlsson, S. (1991). Young adults’ understanding of evolutionary explanations: preliminary observations learning research and development center. Pittsburgh: University of Pittsburgh.

  • Ohlsson, S., & Bee, N. V. (1992). The effect of expository text on children’s explanations of biological evolution OERI report. Pittsburgh: Learning Research and Development Center, University of Pittsburgh.

    Google Scholar 

  • Opfermann, M., Schmeck, A. & Fischer, H. E. (2017). Multiple representations in physics and science education–why should we use them?. In Multiple Representations in Physics Education (pp. 1–22). Springer, Cham.

  • Peirce, C. S. (1931–1958). Collected papers of Charles Sanders Peirce (vols. 1–8). Cambridge: Harvard University Press (Charles Hartshorne, Paul Weiss, and Arthur W Burks [Eds.], Vols. 1–6; Arthur W. Burks, [Eds.], Vols. 7–8).

  • Perry, J., Meir, E., Herron, J. C., Maruca, S., & Stal, D. (2008). Evaluating two approaches to helping college students understand evolutionary trees through diagramming tasks. CBE-Life Science Education, 7(2), 193–201. https://doi.org/10.1187/cbe.07-01-0007.

  • Phillips, B. C., Novick, L. R., Catley, K. M. & Funk, D. J. (2010a). Interactive effects of diagrammatic format and teleological beliefs on tree thinking. Thirty-second Annual Meeting of the Cognitive Science Society, Portland, OR.

  • Phillips, B., Novick, L. & Catley, K. (2010b, June). How high school students reason about the tree of life: a developmental perspective. In Proceedings of the 9th International Conference of the Learning Sciences-Volume 2 (pp. 221–222). International Society of the Learning Sciences.

  • Pietsch, T. W. (2012). Trees of life: a visual history of evolution. JHU Press.

  • Pillsbury, R. T. (2008). Diagramming the never ending story: Student-generated diagrammatic stories integrate and retain science concepts improving science literacy. Ann Arbor: The University of North Carolina at Charlotte.

  • Ragan, M. A. (2009). Trees and networks before and after Darwin. Biology Direct, 4(1), 43.

    Google Scholar 

  • Raven, P., Johnson, G. B., Mason, K. A., Losos, J. B., & Singer, S. S. (2014). Biology (10th ed.). New York, NY: McGraw-Hill Higher Education.

    Google Scholar 

  • Rennie, L. J., & Jarvis, T. (1995). Children’s choice of drawings to communicate their ideas about technology. Research in Science Education, 25(3), 239–252.

    Google Scholar 

  • Rieppel, O. (2010). The series, the network, and the tree: changing metaphors of order in nature. Biology and Philosophy, 25(4), 475–496.

    Google Scholar 

  • Roth, W. ‐M. (1995). Authentic school science, Vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers.

  • Roth, W. ‐M., & Bowen, G. M. (2003). When are graphs worth ten thousand words? An expert-expert study. Cognition and Instruction, 21(4), 429–473.

  • Russell, T., & McGuigan, L. (2001). Promoting understanding through representational redescription: An illustration referring to young pupils’ ideas about gravity. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Bisdikian, G. Fassoulopoulos, E. Hatzikraniotis, & E. Kallery (Eds.), Science education research in the knowledge‐based society. Proceedings of the third international conference of the ESERA (pp. 600–602). Thessaloniki, Greece: Aristotle University of Thessaloniki.

  • Sandvik, H. (2008). Tree thinking cannot taken for granted: Challenges for teaching phylogenetics. Theory in Biosciences, 127(1), 45–51.

  • Saxe, G. B., & Esmonde, I. (2005). Studying cognition in flux: a historical treatment of Fu in the shifting structure of Oksapmin mathematics. Mind, Culture, and Activity, 12(3–4), 171–225.

    Google Scholar 

  • Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.

    Google Scholar 

  • Scientists’ Discovery Room (SDR) Initiative in Innovative Computing. (2008). Involv: Exploring life science with multi-touch. from http://iic-dev.seas.harvard.edu/multitouch/. Accessed 24 Feb 2009.

  • Settlage Jr., J. (1994). Conceptions of natural selection: A snapshot of the sense-making process. Journal of Research in Science Teaching, 31(5), 449–457.

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.

    Google Scholar 

  • Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification — the case of algebra. Educational Studies in Mathematics, 26(2), 191–228. https://doi.org/10.1007/BF01273663; http://link.springer.com/article/10.1007%2FBF01273663.

    Article  Google Scholar 

  • Shade, C. K. (2008). The effects of diagram format on students’ interpretation of evolutionary diagrams. Undergraduate Senior Honors Thesis completed under the direction of Prof. Laura R. Novick, Vanderbilt University, Nashville, TN. Retrieved from http://hdl.handle.net/1803/1104. Accessed 18 August 2018.

  • Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology, 91, 690–702.

    Google Scholar 

  • Sherin, B. L. (2000). How students invent representations of motion: a genetic account. The Journal of Mathematical Behavior, 19(4), 399–441.

    Google Scholar 

  • Skelton, P., Smith, A., & Monks, N. (2002). Cladistics: A practical primer on CD-ROM. Cambridge: Cambridge University Press.

  • Smith, N. (2005). CamStudio. [Free Streaming Video Desktop Capture Software] Retrieved from http://camstudio.org/. Accessed 18 August 2018.

  • Smith, J. J., & Cheruvelil, K. S. (2009). Using inquiry and tree-thinking to “March through the animal phyla”: teaching introductory comparative biology in an evolutionary context. Evolution: Education and Outreach, 2(3), 429–444.

    Google Scholar 

  • Smith, J. J., Cheruvelil, K. S., & Auvenshine, S. (2013). Assessment of student learning associated with tree thinking in an undergraduate introductory organismal biology course. CBE-Life Sciences Education, 12(3), 542–552.

    Google Scholar 

  • Stratford, S. J., Krajcik, J., & Soloway, E. (1998). Secondary students’ dynamic modeling processes: analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7(3), 215–234.

    Google Scholar 

  • Tassy, P. (2011). Trees before and after Darwin. Journal of Zoological Systematics and Evolutionary Research, 49(2), 89–101.

    Google Scholar 

  • Torrens, E., & Barahona, A. (2012). Why are some evolutionary trees in natural history museums prone to being misinterpreted? Evolution: Education and Outreach, 5(1), 76–100. https://doi.org/10.1007/s12052-012-0395-0.

    Article  Google Scholar 

  • Tversky, B. (2001). Spatial schemas in depictions. In M. Gattis (Ed.), Spatial schemas and abstract thought (pp. 79–111). Cambridge, MA: MIT Press.

    Google Scholar 

  • Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129–140.

    Google Scholar 

  • Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285–325.

  • Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31(2), 142–166.

    Google Scholar 

  • Walter, E. M., Halverson, K. M., & Boyce, C. J. (2013). Investigating the relationship between college students’ acceptance of evolution and tree thinking understanding. Evolution: Education and Outreach, 6(1), 26.

    Google Scholar 

  • Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and testing computational theories—an embodied modeling approach. Cognition and Instruction, 24(2), 171–209.

    Google Scholar 

  • Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1991). The compleat cladist: A primer of phylogenetic procedures. Lawrence, Kansas: The University of Kansas Museum of Natural History.

  • Wilkinson, L. (1999). Graphs for research in counseling psychology. Counseling Psychology, 27, 384–407.

    Google Scholar 

  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.

    Google Scholar 

  • Winn, W. (1989). 7 The design and use of instructional graphics. In Advances in psychology (Vol. 58, pp. 125–144). North-Holland.

  • Wu, H. K. & Krajcik, J. S. (2006). Inscriptional practices in two inquiry-based classrooms: a case study of seventh graders’ use of data tables and graphs. Journal of Research in Science Teaching, 43(1), 63–95. doi:https://doi.org/10.1002/tea.20092; http://it-umweb.ume.maine.edu/center/EnvData/wukrajcik.pdf

  • Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821–842.

    Google Scholar 

  • Zacks, J., & Tversky, B. (1999). Bars and lines: a study of graphic communication. Memory and Cognition, 27(6), 1073–1079.

    Google Scholar 

Download references

Funding

Funding for this research was provided by the Spatial Intelligence and Learning Center, a National Science Foundation Science of Learning Center, NSF Award No. SBE-0541957 and SBE-1041707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillia Matuk.

Electronic supplementary material

ESM 1

(DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matuk, C., Uttal, D.H. The Effects of Invention and Recontextualization on Representing and Reasoning with Trees of Life. Res Sci Educ 50, 1991–2033 (2020). https://doi.org/10.1007/s11165-018-9761-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-018-9761-4

Keywords

Navigation