Skip to main content
Log in

Reactive sensing capability towards the working electrical and chemical conditions of poly (aniline –co–o-toluidine) copolymers

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Conducting polymers are considered as reactive gels which can sense the working ambient through their unique electrochemical reaction. Copolymers of aniline with o-toluidine for three different monomer compositions were synthesized chemically and were characterized using FTIR and UV-Vis spectroscopy, SEM, TGA, and cyclic voltammetry. The electrochemical reactive sensing characteristics with respect to the electrical and chemical working conditions of the copolymers were verified and compared through Chronopotentiometric responses in aqueous solutions of HCl by changing the reaction variables: applied current and chemical environment (electrolyte concentration) at a fixed constant charge. The consumed electrical energy during the electrochemical reaction of the copolymers varies linearly with the driving current and follows a logarithmic dependence on the electrolyte concentration. The consumed electrical energy during the reaction was found to act as the sensing parameter. At the same experimental condition, the sensitivity was associated with the conductivity of the copolymers. The highly conducting composition gives the highest sensitivity. These experimental results were fitted with the theoretical equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.V. Conzuelo, J. Arias-Pardilla, J.V. Cauich-Rodríguez, M.A. Smit, T.F. Otero, Sensors 10, 2638 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.A. Geeves, Biopolymers 105, 483 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. T. Sinkjaer, M. Haugland, J. Haase, Exp Brain Res 98, 542 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. R. Rajamany, S. Prakash, Y.A. Ismail, Plast. Rubber Compos., 51, 240 (2021)

  5. Y. Sowa, R.M. Berry, Q. Rev. Biophys. 41, 103 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. F. García-Córdova, L. Valero, Y.A. Ismail, T.F. Otero, J Mater Chem 21, 17265 (2011)

    Article  CAS  Google Scholar 

  7. Y.A. Ismail, S.R. Shin, K.M. Shin, S.G. Yoon, K. Shon, S.I. Kim et al., Sens Actuators B Chem 129, 834 (2008)

    Article  CAS  Google Scholar 

  8. Y.A. Ismail, A. Shabeeba, M.P. Sidheekha, L. Rajan, in Actuators: Fundamentals, Principles, Materials and Applications, ed. By A. Inamuddin, R. Boddulla, A.M Asiri, (John Wiley & Sons Inc, Hoboken, 2020), p. 211

  9. W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu et al., Nanotechnology 20, 085102 (2009)

    Article  PubMed  CAS  Google Scholar 

  10. Y.A. Ismail, J. Chang, S.R. Shin, R.S. Mane, S.-H. Han, S.J. Kim, J Electrochem Soc 156, A313 (2009)

    Article  CAS  Google Scholar 

  11. T. Otero, M. Broschart, J Appl Electrochem 36, 205 (2006)

    Article  CAS  Google Scholar 

  12. T.F. Otero, Advances in Science and Technology, Trans Tech Publ, pp. 112 (2008)

  13. M.P. Sidheekha, G.E. Rajendran, A. Shabeeba, Y.A. Ismail, J Mater Res 36, 1914 (2021)

    Article  CAS  Google Scholar 

  14. N.Q. Khuyen, R. Kiefer, Z. Zondaka, G. Anbarjafari, A.-L. Peikolainen, T.F. Otero et al., Polymers 12, 2060 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  15. S. Shahrivari, E. Kowsari, A. Shockravi, A. Ehsani, Res Chem Intermed 46, 871 (2020)

    Article  CAS  Google Scholar 

  16. O. Gumusay, T. Soganci, S. Durur, H.C. Soyleyici, H. Cetisli, M. Ak, Ionics 26, 3501 (2020)

    Article  CAS  Google Scholar 

  17. J. Li, A. Levitt, N. Kurra, K. Juan, N. Noriega, X. Xiao et al., Energy Storage Mater. 20, 455 (2019)

    Article  Google Scholar 

  18. T.F. Otero, J.M. Sansieña, Adv Mater 10, 491 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Y.A. Ismail, J.G. Martínez, A.S. Al Harrasi, S.J. Kim, T.F. Otero, Sens Actuators B Chem 160, 1180 (2011)

    Article  CAS  Google Scholar 

  20. T. Otero, J. Martinez, J. Arias-Pardilla, Electrochim Acta 84, 112 (2012)

    Article  CAS  Google Scholar 

  21. C. Park, J.M. Kim, Y. Kim, S. Bae, M. Do, S. Im et al., ACS Appl. Electron. Mater. 3, 4781 (2021)

    Article  CAS  Google Scholar 

  22. A. Thadathil, Y.A. Ismail, P. Periyat, RSC Adv 11, 35828 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Huhtala, J. Heino, D. Casciari, A. de Luise, M.S. Johnson, Matrix Biol 24, 83 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. V.A. Nguyen, C. Kuss, J Electrochem Soc 167, 065501 (2020)

    Article  CAS  Google Scholar 

  25. S. Shafei, J. Foroughi, L. Stevens, C.S. Wong, O. Zabihi, M. Naebe, Res Chem Intermed 43, 1235 (2017)

    Article  CAS  Google Scholar 

  26. T. Otero, M. Cortes, Sens Actuators B Chem 96, 152 (2003)

    Article  CAS  Google Scholar 

  27. T.F. Otero, S. Beaumont, Sens Actuators B Chem 263, 493 (2018)

    Article  CAS  Google Scholar 

  28. M. Fuchiwaki, J.G. Martinez, T.F. Otero, Adv Funct Mater 25, 1535 (2015)

    Article  CAS  Google Scholar 

  29. T.F. Otero, S. Beaumont, Sens Actuators B Chem 253, 958 (2017)

    Article  CAS  Google Scholar 

  30. R. Davies, Nature 199, 1068 (1963)

    Article  CAS  PubMed  Google Scholar 

  31. B. Zhang, Z. Jiang, Q. Wang, J.-S. Seo, M. Seok, 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), IEEE, pp. 91 (2015)

  32. K.K. Sadasivuni, D. Ponnamma, H.-U. Ko, H.C. Kim, L. Zhai, J. Kim, Sens Actuators B Chem 233, 633 (2016)

    Article  CAS  Google Scholar 

  33. T.F. Otero, J Mater Chem 19, 681 (2009)

    Article  CAS  Google Scholar 

  34. T. Otero, Bioinspir. Biomim. 3, 035004 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Y.A. Ismail, J.G. Martinez, T.F. Otero, J Electroanal Chem 719, 47 (2014)

    Article  CAS  Google Scholar 

  36. L. Valero, T.F. Otero, J.G. Martínez, ChemPhysChem 15, 293 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. T. Otero, H. Grande, J. Rodriguez, J Electroanal Chem 394, 211 (1995)

    Article  Google Scholar 

  38. A. Shabeeba, Y.A. Ismail, Mater Res Bull 152, 111817 (2022)

    Article  CAS  Google Scholar 

  39. T.F. Otero, J.G. Martinez, Prog Polym Sci 44, 62 (2015)

    Article  CAS  Google Scholar 

  40. S. Beaumont, T.F. Otero, ChemElectroChem 4, 3091 (2017)

    Article  CAS  Google Scholar 

  41. Y.A. Ismail, J.G. Martínez, T.F. Otero, Electrochim Acta 123, 501 (2014)

    Article  CAS  Google Scholar 

  42. A.-I. Bita, G. Stan, M. Niculescu, I. Ciuca, E. Vasile, I. Antoniac, J Adhes Sci Technol 30, 1968 (2016)

    Article  CAS  Google Scholar 

  43. Y.A. Ismail, F. Mohammad, A. Ahmad, J. Macromol. Sci. A 48, 952 (2011)

    Article  CAS  Google Scholar 

  44. A. Shabeeba, M.M. Manikandan, M.P. Sidheekha, L. Rajan, Y.A. Ismail, Mater. Today: Proc. 51, 2293 (2022)

    CAS  Google Scholar 

  45. Y.A. Ismail, A. Ahmad, F. Mohammad, J. Macromol. Sci. A 45, 650 (2008)

    Article  CAS  Google Scholar 

  46. A. Benchikh, R. Aitout, L. Makhloufi, L. Benhaddad, B. Saidani, Desalination 249, 466 (2009)

    Article  CAS  Google Scholar 

  47. L. Li, H. Liu, B. Li, Y. Guo, L. Qing, B. Wang, Macromol. Res. 28, 455 (2020)

    Article  CAS  Google Scholar 

  48. E. Aboobakri, M. Jahani, Res Chem Intermed 46, 5181 (2020)

    Article  CAS  Google Scholar 

  49. A.A. Ganash, N.A. Alhebshi, N.H. Alyoubi, J Appl Electrochem 50, 1019 (2020)

    Article  CAS  Google Scholar 

  50. N. Sharma, A. Kapil, International Workshop on the Physics of Semiconductor and Devices, Springer, pp. 139 (2017)

  51. D. Srivastava, R. Shukla, Proc. Natl. Acad. Sci. India Phys. Sci. 90, 309 (2020)

    Article  CAS  Google Scholar 

  52. A.K. Sharma, A.K. Sharma, R. Sharma, Bull Mater Sci 44, 1 (2021)

    Article  CAS  Google Scholar 

  53. V. Najafi, E. Ahmadi, F. Ziaee, H. Omidian, H. Sedaghat, J Polym Environ 27, 784 (2019)

    Article  CAS  Google Scholar 

  54. L. Rajan, M.P. Sidheekha, A. Shabeeba, Y.A. Ismail, Matr. Chem. Front. 6, 1706 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Central Sophisticated Instrumentation Facilities (CSIF), University of Calicut, Kerala, India for providing instrumentation facilities for analysis. Lijin Rajan acknowledges Kerala State Council for Science Technology and Environment (KSCSTE), Kerala, India for the financial assistance through the research fellowship. M P Sidheekha acknowledges UGC, India for providing a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya A. Ismail.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial or non-financial interest that could have appeared to influence the work reported here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, L., Sidheekha, M.P., Shabeeba, A. et al. Reactive sensing capability towards the working electrical and chemical conditions of poly (aniline –co–o-toluidine) copolymers. Res Chem Intermed 48, 4313–4329 (2022). https://doi.org/10.1007/s11164-022-04814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04814-6

Keywords

Navigation