Skip to main content
Log in

Kinetic modeling and experimental investigations of dry reforming of methanol over a Cr-Mo-Mn/SiO2 catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To derive a kinetic model for dry reforming of methanol, the experimental investigations were accomplished at vast working conditions (i.e., temperature: 500 °C–900 °C and CO2/CH3OH ratio (C/M) of 1–2.5) on Cr-Mo-Mn/SiO2 catalyst. The kinetic model developed based on the Langmuir–Hinshelwood (LH) approach and mechanism contained three reversible reactions on three types of active sites. The results of the statistical analysis presented that kinetic model parameters were statistically significant. The error of the suggested kinetic model was 9.87% using equation state (EoS) of Soave–Redlich–Kwong on the basis of modified Huron–Vidal mixing rule (SRK/MHV2) applied to evaluate vapor–liquid equilibrium behavior. The highest precision in predicting the experimental data by the suggested kinetic model was assigned to methanol conversion. The outcomes presented the high temperature is suitable for higher CO yield, methanol and CO2 conversions. An augmentation in carbon dioxide percentage of the inlet feed led to enhance in CO yield, methanol and CO2 conversions, while H2 yield was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

cal:

Calculated

E :

Activation energy of reaction (kJ/mol)

exp:

Experimental

in:

Inlet

k i :

Reaction rate constant of "i"

k i ,0 :

Pre-exponential factor of the reaction "i"

K :

Equilibrium constant

m i :

Molar flow rate of ith component (mol/s)

n exp :

Number of the experimental data

out:

Outlet

R :

Universal gas constant

r :

Reaction rate (mol/kgcat s)

res:

Response

w cat :

Catalyst weight (kg)

x CH3OH :

Methanol conversion (%)

x CO2 :

CO2 conversion (%)

References

  1. A. Mosayebi, Int. J. Energy Res. 45, 3288 (2021)

    Article  CAS  Google Scholar 

  2. A. Saberimoghaddam, A. Nozari, Res. Chem. Intermed. 44, 201 (2018)

    Article  CAS  Google Scholar 

  3. G.R. Kale, S. Doke, S. Anjikar, J. CO2 Util. 18, 318 (2017)

    Article  CAS  Google Scholar 

  4. G.S. Go, H.J. Lee, D.J. Moon, Y.C. Kim, Res. Chem. Intermed. 42, 289 (2016)

    Article  CAS  Google Scholar 

  5. D. Batebi, R. Abedini, A. Mosayebi, Int. J. Hydrog. Energy 45, 14293 (2020)

    Article  CAS  Google Scholar 

  6. A. Mosayebi, M. Nasabi, Int. J. Energy Res. 44, 5500 (2020)

    Article  CAS  Google Scholar 

  7. J. Shariati, A. Haghtalab, A. Mosayebi, J. Energy Chem. 28, 9 (2019)

    Article  Google Scholar 

  8. A. Mosayebi, M. Nasabi, R. Abedini, Pet. Sci. Technol. 37, 2338 (2019)

    Article  CAS  Google Scholar 

  9. S. Sá, H. Silva, L. Brandão, J.M. Sousa, A. Mendes, Appl. Catal. B 99, 43 (2010)

    Article  Google Scholar 

  10. C. Okutan, H. Arbag, N. Yasyerli, S. Yasyerli, Int. J. Hydrog. Energy 45, 13911 (2020)

    Article  CAS  Google Scholar 

  11. G. Mitran, S. Chen, D.K. Seo, Mol. Catal. 483, 11070 (2020)

    Google Scholar 

  12. D. Iruretagoyena, K. Hellgardt, D. Chadwick, Int. J. Hydrog. Energy 43, 4211 (2018)

    Article  CAS  Google Scholar 

  13. R. Thattarathody, M. Sheintuch, Appl. Catal. A-Gen. 540, 47 (2017)

    Article  CAS  Google Scholar 

  14. A. Mosayebi, J. Taiwan. Inst. Chem. E 114, 36 (2020)

    Article  CAS  Google Scholar 

  15. J.K. Lee, J.B. Ko, D.H. Kim, Appl. Catal. A-Gen. 278, 25 (2004)

    Article  CAS  Google Scholar 

  16. M. Hadi Aghaali, S. Firoozi, Powder Technol. 356, 119 (2019)

    Article  Google Scholar 

  17. H. Zhang, X. Li, F. Zhu, K. Cen, C. Du, X. Tu, Chem. Eng. J. 310, 114 (2017)

    Article  CAS  Google Scholar 

  18. O.V. Krylov, AKh. Mamedov, S.R. Mirzabekova, Ind. Eng. Chem. Res. 34, 474 (1995)

    Article  CAS  Google Scholar 

  19. S.R. Mirzabekova, AKh. Mamedov, V.S. Aliev, Kinet. Catal. 34, 939 (1993)

    Google Scholar 

  20. S.R. Mirzabekova, AKh. Mamedov, V.S. Aliev, Petrol. Chem. 33, 28 (1993)

    Google Scholar 

  21. S.R. Mirzabekova, A.K. Mamedov, O.V. Krylov, Kinet. Catal. 34, 184 (1993)

    CAS  Google Scholar 

  22. H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, Appl. Catal. A-Gen. 259, 83 (2004)

    Article  CAS  Google Scholar 

  23. A. Mosayebi, R. Abedini, Adv. Sustain. Pet. Eng. 3, 49 (2011)

    Google Scholar 

  24. J. Yang, Y. Lue, J. Chang, Ind. Eng. Chem. 42, 5066 (2003)

    Article  CAS  Google Scholar 

  25. W. Qian, H. Zhang, W. Ying, D. Fang, Chem. Eng. J. 228, 526 (2013)

    Article  CAS  Google Scholar 

  26. B.T. Teng, J. Chang, C.H. Zhang, D.B. Cao, J. Yang, Y. Liu, X.H. Guo, H.W. Xiang, Y.W. Li, Appl. Catal. A-Gen. 301, 39 (2006)

    Article  CAS  Google Scholar 

  27. D. Batebi, R. Abedini, A. Mosayebi, Ind. Eng. Chem. Res. 60, 851 (2021)

    Article  CAS  Google Scholar 

  28. A. Haghtalab, J. Shariati, A. Mosayebi, React. Kinet. Mech. Catal. 126, 1003 (2019)

    Article  CAS  Google Scholar 

  29. A. Mosayebi, A. Haghtalab, Chem. Eng. J. 259, 191 (2015)

    Article  CAS  Google Scholar 

  30. A. Mosayebi, M.A. Mehrpouya, R. Abedini, Chem. Eng. J. 286, 416 (2016)

    Article  CAS  Google Scholar 

  31. A. Mosayebi, R. Abedini, Int. J. Hydrog. Energy 42, 27013 (2017)

    Article  CAS  Google Scholar 

  32. K. Zheng, R. Yang, H. Wu, Ind. Eng. Chem. Res. 58, 8387 (2019)

    Article  CAS  Google Scholar 

  33. J.N. Jaubert, R. Privat, Fluid Phase Equilib. 295, 26 (2010)

    Article  CAS  Google Scholar 

  34. A. Haghtalab, M. Nabipoor, S. Farzad, Fuel Process. Technol. 104, 73 (2012)

    Article  CAS  Google Scholar 

  35. O. Ozkan, A.N. Akin, Int. J. Hydrog. Energy 44, 14117 (2019)

    Article  Google Scholar 

  36. K. Faungnawakij, R. Kikuchi, K. Eguchi, J. Power Sources. 161, 87 (2006)

    Article  CAS  Google Scholar 

  37. A. Mosayebi, R. Abedini, J. Fuel Chem. Technol. 46, 311 (2018)

    Article  CAS  Google Scholar 

  38. M. Nasabi, M. Labbafi, M. Hadinezhad, M. Khanmohammadi, A. Bagheri Garmarudi, Int. J. Food Sci. Technol. 48, 316 (2013)

    Article  CAS  Google Scholar 

  39. M. Nasabi, M. Labbafi, M. Khanmohammadi, J. Food Process. Eng. 40, e12537 (2017)

    Article  Google Scholar 

  40. R. Cheng, X. Xue, W. Liu, N. Zhao, X. He, Z. Liu, B. Liu, Macromol. React. Eng. 9, 462 (2015)

    Article  CAS  Google Scholar 

  41. A.B. Gaspar, L.C. Dieguez, J. Mol. Catal. A Chem. 219, 357 (2004)

    Article  CAS  Google Scholar 

  42. A.B. Gaspar, R.L. Martins, M. Schmal, L.C. Dieguez, J. Mol. Catal. A Chem. 169, 105 (2001)

    Article  CAS  Google Scholar 

  43. S. Zheng, L. Song, S. Tang, C. Liu, H. Yue, B. Liang, RSC Adv. 8, 1979 (2018)

    Article  CAS  Google Scholar 

  44. D.R. Peacor, Krist. Cryst. Mater. 138, 274 (1973)

    CAS  Google Scholar 

  45. J.Y. Do, N.K. Park, T.J. Lee, S.T. Lee, M. Kang, Int. J. Energy Res. 42, 429 (2018)

    Article  CAS  Google Scholar 

  46. C. Reed, Y.K. Lee, S.T. Oyama, J. Phys. Chem. B 110, 4207 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. V. Fleischer, U. Simon, S. Parishan, M.G. Colmenares, O. Görke, A. Gurlo, W. Riedel, L. Thum, J. Schmidt, T. Risse, K.P. Dinse, R. Schomäcker, J. Catal. 360, 102 (2018)

    Article  CAS  Google Scholar 

  48. A. Khojastehnezhad, F. Moeinpour, M. Vafaei, J. Mex. Chem. Soc. 59, 29 (2015)

    CAS  Google Scholar 

  49. M.K. Trivedi, R.M. Tallapragad, A. Branton, D. Trivedi, G. Nayak, O. Latiyal, S. Snehasis, J. Powder Metall. Min. 4, 1 (2015)

    Google Scholar 

  50. C. Graschinsky, M. Laborde, N. Amadeo, A. Le Valant, N. Bion, F. Epron, D. Duprez, Ind. Eng. Chem. Res. 49, 12383 (2010)

    Article  CAS  Google Scholar 

  51. D.R. Sahoo, S. Vajpai, S. Patel, K.K. Pant, Chem. Eng. J. 125, 139 (2007)

    Article  CAS  Google Scholar 

  52. J. Xu, G. Froment, AIChE J. 35, 88 (1989)

    Article  CAS  Google Scholar 

  53. K. Hou, R. Hughes, Chem. Eng. J. 8, 311 (2001)

    Article  Google Scholar 

  54. Y. Wan, Z. Zhou, Z. Cheng, Chin. J. Chem. Eng. 24, 1186 (2016)

    Article  CAS  Google Scholar 

  55. B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, Appl. Catal. A-Gen. 179, 21 (1999)

    Article  CAS  Google Scholar 

  56. V. Agarwal, S. Patel, K.K. Pant, Appl. Catal. A-Gen. 279, 155 (2005)

    Article  CAS  Google Scholar 

  57. N.N. Gavrilova, V.N. Sapunov, V.V. Skudin, Chem. Eng. J. 374, 983 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mosayebi.

Ethics declarations

Conflicts of interest

The authors and the institutes where the work has been carried out declare that there are no conflicts of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosayebi, A. Kinetic modeling and experimental investigations of dry reforming of methanol over a Cr-Mo-Mn/SiO2 catalyst. Res Chem Intermed 47, 2951–2972 (2021). https://doi.org/10.1007/s11164-021-04448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04448-0

Keywords

Navigation