Skip to main content
Log in

Adsorption kinetic modeling of toxic vapors on activated carbon in the batch reactor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The compound ortho-chlorobenzylidene malononitrile (OCM) is the defining component of tear gas commonly referred to as CS gas. In present work, at first, OCM was changed from solid state to aerosol form (vapor) using thermal technique and then the kinetics of adsorption of OCM aerosol on a cylindrical activated carbon was experimentally investigated. For this purpose, an experimental setup was designed and manufactured for measurement of adsorbed-gas equilibrium pressure. The effects of the initial weight of OCM (3–15 mg) and time of adsorption were studied. The kinetic adsorption data were correlated with eight different models in order to select the best model for this system. The kinetic adsorption data were well described by fractal-like pseudo-first order (FL-PFO) with high correlation coefficient (average R2 > 0.9963) and the appropriate physical interpretation of model coefficients. In addition, the t test results confirm the high capability of FL-PFO model for the analysis of the kinetic data. The obtained results showed that the equilibrium adsorption time significantly increased and the adsorption rate coefficient decreased (to a minimum value) with increasing initial weight of OCM. Also, the analysis of adsorption data for this system confirms that there are heterogeneous sites in the adsorbent surface with different adsorption energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Yamashita, K. Maekawa, H. Nakao, M. Anpo, Appl. Surf. Sci. 237, 393 (2004)

    Article  CAS  Google Scholar 

  2. K. Naseri, A. Allahverdi, Res. Chem. Intermed. 45, 4863 (2019)

    Article  CAS  Google Scholar 

  3. F. Shoja, M.A. Amani, Res. Chem. Intermed. 45, 4863 (2019)

    Article  Google Scholar 

  4. P. Maneechakr, S. Karnjanakom, Res. Chem. Intermed. 45, 4583 (2019)

    Article  CAS  Google Scholar 

  5. P. Ji, J. Zhang, F. Chen, M. Anpo, Appl. Catal. B 85, 148 (2009)

    Article  CAS  Google Scholar 

  6. K.Y. Foo, B.H. Hameed, J. Hazard. Mater. 172, 523 (2009)

    Article  CAS  Google Scholar 

  7. W.N.R. Wan Isahak, S.Z. Hasan, Z.A.C. Ramli, M.M. Ba-Abbad, M.A. Yarmo, Chem Intermed 44(2), 829 (2018)

    Article  Google Scholar 

  8. A.A. Ramanathan, I.O.P. Conf, Ser. Mater. Sci. Eng. 305, 012001 (2018)

    Google Scholar 

  9. S.K. Lee, Y.N. Jang, I.K. Bae, S.C. Chae, K.W. Ryu, J.K. Kim, Mater. Trans. 50, 2476 (2009)

    Article  CAS  Google Scholar 

  10. K.L. Tan, B.H. Hameed, J. Taiwan Inst. Chem. Eng. 74, 25 (2017)

    Article  CAS  Google Scholar 

  11. M.J. Ahmed, B.H. Hameed, E.H. Hummadi, Carbohydr. Polym. 247, 116690 (2020)

    Article  CAS  Google Scholar 

  12. S. Krishnakumar, P. Somasundaran, Colloids Surf. A 117, 227 (1996)

    Article  Google Scholar 

  13. S. Krishnakumar, P. Somasundaran, Colloids Surf. A 117, 37 (1996)

    Article  CAS  Google Scholar 

  14. D. Madden, Porous solids for low temperature CO2 adsorption, PhD thesis, University of Limerick, Ireland, 2014.

  15. P.K. Gutch, P. Kumar, M.V.S. Suryanarayana, R.C. Malhotra, Defense Sci. J. 55, 447 (2005)

    Article  CAS  Google Scholar 

  16. P.G. Blain, Toxicological Reviews 22, 103 (2003)

    Article  CAS  Google Scholar 

  17. O. Koper, K. J. Klabunde, US Patent vol 6, p.488 (2000)

  18. K.P. Volcho, S.Y. Kurbakova, D.V. Korchagina, E.V. Suslova, N.F. Salakhutdinov, A.V. Toktarev, G.V. Echevskii, V.A. Barkhasha, J. Mol. Catal. A Chem. 195, 263 (2003)

    Article  CAS  Google Scholar 

  19. L. Frankenberg, B. Sorbo, Arch. Toxikol. 31, 99 (1973)

    Article  CAS  Google Scholar 

  20. J.R. Caldwell, H.V. Moyer, Ind. Eng. Chem. Anal. Ed. 7, 38 (1935)

    Article  CAS  Google Scholar 

  21. S. Azizian, J. Colloid Interface Sci. 276, 47 (2004)

    Article  CAS  Google Scholar 

  22. G. Blanchard, M. Maunaye, G. Martin, Water Res. 18, 1501 (1984)

    Article  CAS  Google Scholar 

  23. F.C. Wu, R.L. Tseng, R.S. Juang, Chem. Eng. J. 153, 1 (2009)

    Article  CAS  Google Scholar 

  24. W. J. Weber, J. C. Morris, In Proceedings of International Conference on Water Pollution Symposium. Pergamon Press, Oxford. 2, 231 (1962)

  25. S. Azizian, R. Naviri Fallah, Appl Surf Sci 256, 5153 (2010)

    Article  CAS  Google Scholar 

  26. M.J.D. Low, Chem. Rev. 60, 267 (1960)

    Article  CAS  Google Scholar 

  27. A.W. Marczewski, Langmuir 26, 15229 (2010)

    Article  CAS  Google Scholar 

  28. H. Bashiri, A. Hassani Javanmardi, Chem Phys Lett 671, 1–6 (2017)

    Article  CAS  Google Scholar 

  29. M. Sarabadan, H. Bashiri, S.M. Mousavi, Korean J. Chem. Eng. 36, 1575 (2019)

    Article  CAS  Google Scholar 

  30. H. Bashiri, Chem. Phys. Lett. 575, 101 (2013)

    Article  CAS  Google Scholar 

  31. M. Haerifar, S. Azizian, J. Phys. Chem. C 116, 13111 (2012)

    Article  CAS  Google Scholar 

  32. M. Haerifar, S. Azizian, J. Phys. Chem. C 118, 1129 (2014)

    Article  CAS  Google Scholar 

  33. M. Khosravi, S. Azizian, J. Ind. Eng. Chem. 20, 2561 (2014)

    Article  CAS  Google Scholar 

  34. P.J. Cornbleet, N. Gochman, Clin. Chem. 25, 432 (1979)

    Article  CAS  Google Scholar 

  35. K.V. Kumar, Dyes Pigm. 74, 595 (2007)

    Article  CAS  Google Scholar 

  36. S.K. Lagergren, About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24, 1 (1898)

    Google Scholar 

  37. S. Kim, H. Kim, Int. J. Forecast. 32, 669–679 (2016)

    Article  Google Scholar 

  38. S. Salvestrini, Reac. Kinet. Mech. Cat. 123, 455 (2018)

    Article  CAS  Google Scholar 

  39. R. Kopelman, Science 241, 1620 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. S. Maryam Sajjadi who kindly read the manuscript and made many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeini, P., Bagheri, A. Adsorption kinetic modeling of toxic vapors on activated carbon in the batch reactor. Res Chem Intermed 46, 5547–5566 (2020). https://doi.org/10.1007/s11164-020-04277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04277-7

Keywords

Navigation