Skip to main content

Advertisement

Log in

Effect of nanobubble water on anaerobic methane production from lignin

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is abundant in the environment, which can be used as the substrate for methane production via anaerobic digestion (AD). However, the methane production efficiency from lignocellulosic biomass is relatively low, mainly due to its refractory components, of which lignin is the major barrier to bioconversion and also resists the hydrolysis of lignocellulose, thus limiting the AD process. This study compared the effects of two different gases (N2 and CO2) nanobubble water (NBW) on methane production from lignin using mono-digestion and co-digestion with acetic acid (HAc) at four different total organic carbon (TOC) ratios of HAc to lignin (97.5%:2.5%, 95%:5%, 90%:10%, and 80%:20%). Results show that N2-NBW is the promising NBW which can enhance methane production by 22% compared to the control. In addition, co-digestion of lignin with acetic acid reflects a higher methane production potential in comparison with the mono-digestion of lignin, achieving a much higher methane production (824–1061 mL CH4/g-TOCremoved) when lignin content was less than 20% (TOC basis) and the highest lignin reduction (43%) at the TOC ratio of HAc to lignin of 95%:5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Anwar, M. Gulfraz, M. Irshad, J. Radiat. Res. Appl. Sci. 7, 163 (2014)

    Article  CAS  Google Scholar 

  2. Y. Zheng, J. Zhao, F. Xu, Y. Li, Prog. Energy Combust. Sci 42, 35 (2014)

    Article  Google Scholar 

  3. W. Zhong, Z. Zhang, Y. Luo, S. Sun, W. Qiao, M. Xiao, Bioresour. Technol. 102, 11177 (2011)

    Article  CAS  Google Scholar 

  4. M.A. Amezcua-Allieri, J. Aburto, Lignin - Trends and Applications, ed. By M. Poletto (Intechopen, Norderstedt, 2018), p.145

  5. M. Hiloidhari, D.C. Baruah, Renew. Sust. Energ. Rev. 15, 1885 (2011)

    Article  Google Scholar 

  6. X. Ge, F. Xu, Y. Li, Bioresour. Technol. 205, 239 (2016)

    Article  CAS  Google Scholar 

  7. P. Sivagurunathan, G. Kumar, A. Mudhoo, E.R. Rene, G.D. Saratalee, T. Kobayashi, K. Xu, S.H. Kim, D.H. Kim, Renew. Sust. Energ. Rev. 77, 28 (2017)

    Article  CAS  Google Scholar 

  8. Y. Amao, Y. Sakai, S. Takahara, Res. Chem. Intermed. 42, 7753 (2016)

    Article  CAS  Google Scholar 

  9. M. Asgher, Z. Ahmad, H.M.N. Iqbal, Ind. Crops Prod. 44, 488 (2013)

    Article  CAS  Google Scholar 

  10. M.S. Jang, R.S. Park, I.G. Lee, J.M. Kwak, Y.K. Park, C.H. Ko, Res. Chem. Intermed. 42, 3 (2016)

    Article  CAS  Google Scholar 

  11. K. Tekin, S. Karagöz, Res. Chem. Intermed. 39, 485 (2013)

    Article  CAS  Google Scholar 

  12. Z. Song, G. Yang, X. Liu, Z. Yan, Y. Yuan, Y. Liao., PLoS One, 9, e93801 (2014)

  13. S. Achinas, V. Achinas, G.J.W. Euverink, Engr. 3, 299 (2017)

    Article  Google Scholar 

  14. M. Čater, M. Zorec, R.M. Logar, Springer Sci. Rev. 2, 51 (2014)

    Article  Google Scholar 

  15. R. Chandra, H. Takeuchi, T. Hasegawa, Renew. Sust. Energ. Rev. 16, 1462 (2012)

    Article  CAS  Google Scholar 

  16. N. Voća, T. Krička, T. Ćosić, V. Rupić, Ž. Jukić, S. Kalambura, Plant Soil Environ. 51, 262 (2005)

    Article  Google Scholar 

  17. E. Martínez-Gutiérrez, 3 Biotech 8, 233 (2018)

    Article  Google Scholar 

  18. S.R. Collinson, W. Thielemans, Coord. Chem. Rev. 254, 1854 (2010)

    Article  CAS  Google Scholar 

  19. Z. Chen, C. Wan, Renew. Sust. Energ. Rev. 73, 610 (2017)

    Article  CAS  Google Scholar 

  20. M.J. Taherzadeh, K. Karimi, Int. J. Mol 9, 1621 (2008)

    Article  CAS  Google Scholar 

  21. M. Koyama, S. Yamamoto, K. Ishikawa, S. Ban, T. Toda, Chem. Eng. 311, 55 (2017)

    Article  CAS  Google Scholar 

  22. D.G. Mulat, S.J. Horn, Lignin Valorization: Emerging Approaches, ed. By G.T Beckham (Energy and Environment Series, London, 2018), p. 391

  23. M. Fox, T. Noike, T. Ohki, Water Sci. Technol. 48, 77 (2003)

    Article  CAS  Google Scholar 

  24. K. Ahring, R. Biswas, A. Ahamed, P. J. Teller, H. Uellendahl, Bioresour. Technol., 175 (2014)

  25. M. Alexandropoulou, G. Antonopoulou, E. Fragkou, I. Ntaikou, G. Lyberatos, J. Environ. Manag. 203, 704 (2016)

    Article  Google Scholar 

  26. H. Li, Z. Lei, C. Liu, Z. Zhang, B. Lu, Bioresour. Technol. 175, 494 (2015)

    Article  CAS  Google Scholar 

  27. T. Temesgen, T.T. Bui, M. Han, T.I. Kim, H. Park, Adv. Colloid Interface Sci. 246, 40 (2017)

    Article  CAS  Google Scholar 

  28. A. Agarwal, W.J. Ng, Y. Liu, Chemosphere 84, 1175 (2011)

    Article  CAS  Google Scholar 

  29. A. Azevedo, R. Etchepare, S. Calgaroto, J. Rubio, Miner. Eng. 94, 29 (2016)

    Article  CAS  Google Scholar 

  30. P. Attard, M.P. Moody, J.W.G. Tyrrell, Phys. A 314, 696 (2002)

    Article  CAS  Google Scholar 

  31. D. Wang, X. Yang, C. Tian, Z. Lei, N. Kobayashi, M. Kobayashi, Y. Adachi, K. Shimizu, Z. Zhang, Bioresour. Technol. 273, 63 (2019)

    Article  CAS  Google Scholar 

  32. X. Yang, J. Nie, D. Wang, Z. Zhao, M. Kobayashi, Y. Adachi, K. Shimizu, Z. Lei, Z. Zhang, Sci. Total Environ. 693, 133524 (2019)

    Article  CAS  Google Scholar 

  33. S. Liu, S. Oshita, S. Kawabata, Y. Makino, T. Yoshimoto, Langmuir 32, 11295 (2016)

    Article  CAS  Google Scholar 

  34. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Chem. Rev. 115, 13051 (2015)

    Article  CAS  Google Scholar 

  35. L. Rodriguez-Chiang, J. Llorca, O. Dahl, Bioresour. Technol. 218, 84 (2016)

    Article  CAS  Google Scholar 

  36. T. Amani, M. Nosrati, S.M. Mousavi, Bioresour. Technol. 102, 3716 (2011)

    Article  CAS  Google Scholar 

  37. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for Examination of Water and Wastewater, 22nd edn. (American Public Health Association/American Water Work Association/Water Environment Federation, Washington, DC, 2012)

    Google Scholar 

  38. W. Huang, W. Huang, T. Yuan, Z. Zhao, W. Cai, Z. Zhang, Water Res. 90, 344 (2016)

    Article  CAS  Google Scholar 

  39. K.E. Hammel, A.N. Kapich, K.A. Jensen Jr., Z.C. Ryan, Enzyme Microb. Technol. 30, 445 (2002)

    Article  CAS  Google Scholar 

  40. A. Barakat, F. Monlau, J.P. Steyer, H. Carrere, Bioresour. Technol. 104, 90 (2012)

    Article  CAS  Google Scholar 

  41. Y. Li, R. Zhang, G. Liu, C. Chen, Y.X. HeLiu, Bioresour. Technol. 149, 565 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the financial support by Japanese Development Scholarship (JDS) during her study at University of Tsukuba, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thi Hang Ho, Xiaojing Yang or Zhongfang Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, T.H., Yang, X., Nie, J. et al. Effect of nanobubble water on anaerobic methane production from lignin. Res Chem Intermed 46, 4767–4780 (2020). https://doi.org/10.1007/s11164-020-04250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04250-4

Keywords

Navigation