Skip to main content
Log in

Mechanochemical formation of highly active manganese species from OMS-2 and peroxymonosulfate for degradation of dyes in aqueous solution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The performance and mechanism of mechanochemical activation of peroxymonosulfate (PMS) by cryptomelane-type manganese octahedral molecular sieve (OMS-2) prepared by a refluxing method for degradation of Acid Orange 7 (AO7) have been demonstrated. Grinding of OMS-2 and PMS in presence of a small amount of H2O for a short time induced a much higher AO7 degradation efficiency compared with the OMS-2 + PMS system without pretreatment. Such degradation can also be efficiently performed by this system over a wide range of solution pH and for different organic dyes. For other manganese oxides such as OMS-2 prepared by a solvent-free method, amorphous manganese oxides, and γ-MnO2, with coexistence of Mn(III) and Mn(IV) species, great enhancement of catalytic activity was also observed. Characterization of the ground OMS-2 by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) suggested that, during grinding, low-valent manganese species are oxidized to Mn(IV) species, representing the main active species for AO7 degradation. The produced SO −·4 and HO· radicals from Mn(III) and the rest of the PMS also take part in the degradation reaction, although their contribution is limited. In addition, the influence of some key factors including the water content and time on the grinding and AO7 degradation was explored. The results of this study provide deep insight into mechanochemical activation of PMS with manganese oxides for enhanced degradation of pollutants in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Chem. Soc. Rev. 41, 413 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. G.-W. Wang, Chem. Soc. Rev. 42, 7668 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Q. Tan, J. Li, Environ. Sci. Technol. 49, 5849 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. A. Fischer, C. Ney, G. Kickelbick, Eur. J. Inorg. Chem. 2013, 5701 (2013)

    Article  CAS  Google Scholar 

  5. A. Nasser, U. Mingelgrin, Appl. Clay Sci. 67–68, 141 (2012)

    Article  CAS  Google Scholar 

  6. X. Guo, D. Xiang, G. Duan, P. Mou, Waste Manag. 30, 4 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. G. Cagnetta, J. Robertson, J. Huang, K. Zhang, G. Yu, J. Hazard. Mater. 313, 85 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. S. Lu, J. Huang, Z. Peng, X. Li, J. Yan, Chem. Eng. J. 195–196, 62 (2012)

    Article  CAS  Google Scholar 

  9. S. Deng, S. Kang, N. Feng, J. Zhu, B. Yu, X. Xie, J. Chen, J. Hazard. Mater. 333, 116 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. P. Di Leo, M.D.R. Pizzigallo, V. Ancona, F. Di Benedetto, E. Mesto, E. Schingaro, G. Ventruti, J. Hazard. Mater. 244–245, 303 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. A. Nasser, G. Sposito, M.A. Cheney, Colloids Surf., A 163, 117 (2000)

    Article  CAS  Google Scholar 

  12. P. Di Leo, M.D.R. Pizzigallo, V. Ancona, F. Di Benedetto, E. Mesto, E. Schingaro, G. Ventruti, J. Hazard. Mater. 201–202, 148 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. A. J., D.A. J., P.W. G., Phys. Status Solidi B 3, 2275 (1963)

  14. W. Zhang, H. Wang, H. Jun, M. Yu, F. Wang, L. Zhou, G. Yu, Chem. Eng. J. 239, 185 (2014)

    Article  CAS  Google Scholar 

  15. X. Liu, X. Zhang, K. Zhang, C. Qi, Chemosphere 150, 551 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. J. Wang, S. Wang, Chem. Eng. J. 334, 1502 (2018)

    Article  CAS  Google Scholar 

  17. P. Hu, M. Long, Appl. Catal. B 181, 103 (2016)

    Article  CAS  Google Scholar 

  18. C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, J. Hazard. Mater. 276, 452 (2014)

    Article  CAS  Google Scholar 

  19. S. Luo, L. Duan, B. Sun, M. Wei, X. Li, A. Xu, Appl. Catal. B 164, 92 (2015)

    Article  CAS  Google Scholar 

  20. L. Duan, B. Sun, M. Wei, S. Luo, F. Pan, A. Xu, X. Li, J. Hazard. Mater. 285, 356 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. J. Li, J. Fang, L. Gao, J. Zhang, X. Ruan, A. Xu, X. Li, Appl. Surf. Sci. 402, 352 (2017)

    Article  CAS  Google Scholar 

  22. A. Iyer, H. Galindo, S. Sithambaram, C. King’ondu, C.-H. Chen, S.L. Suib, Appl. Catal., A 375, 295 (2010)

  23. R. Wang, J. Li, Environ. Sci. Technol. 44, 4282 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. V.P. Santos, O.S.G.P. Soares, J.J.W. Bakker, M.F.R. Pereira, J.J.M. Órfão, J. Gascon, F. Kapteijn, J.L. Figueiredo, J. Catal. 293, 165 (2012)

    Article  CAS  Google Scholar 

  25. K. Selvakumar, S.M. Senthil Kumar, R. Thangamuthu, G. Kruthika, P. Murugan, Int. J. Hydrogen Energy 39, 21024 (2014)

    Article  CAS  Google Scholar 

  26. X. Du, Y. Zhang, I. Hussain, S. Huang, W. Huang, Chem. Eng. J. 313, 1023 (2017)

    Article  CAS  Google Scholar 

  27. M. Wei, L. Gao, J. Li, J. Fang, W. Cai, X. Li, A. Xu, J. Hazard. Mater. 316, 60 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. J. Wan, L. Zhou, H. Deng, F. Zhan, R. Zhang, J. Mol. Catal. A: Chem. 407, 67 (2015)

    Article  CAS  Google Scholar 

  29. C.K. Remucal, M. Ginder-Vogel, Environ. Sci. Process Impacts 16, 1247 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support provided by the Science and Technology Research Project of Hubei Provincial Department of Education (D20181706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Wang, M., Wei, Y. et al. Mechanochemical formation of highly active manganese species from OMS-2 and peroxymonosulfate for degradation of dyes in aqueous solution. Res Chem Intermed 45, 935–946 (2019). https://doi.org/10.1007/s11164-018-3653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3653-0

Keywords

Navigation