Skip to main content
Log in

Influence of a diimine ligand and an activator on the processes taking place in Brookhart-type nickel catalytic systems

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Brookhart-type catalytic systems based on zero-valent nickel complexes Ni(COD)2 and Ni(COD)L [where COD is cyclooctadiene and L is bis-2,6-diisopropylphenyl-diazabutadiene (DPP-DAB) or N,N′-bis-2,6- diisopropylphenyl-bis-iminoacenaphthene (DPP-BIAN)] activated with Lewis acids such as methylaluminoxane (MAO) and boron trifluoride etherate BF3·OEt2 were investigated via electron spin resonance (ESR) spectrometry, revealing that presence of diimine ligand results in Lewis acids, formally oxidating Ni(0) to Ni(I). An oxidation mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.K. Johnson, C.M. Killian, M. Brookhart, J. Am. Chem. Soc. 117, 6414 (1995)

    Article  CAS  Google Scholar 

  2. M.S. Brookhart et al, WO patent application 9623010 to DuPont, April 3 (1995)

  3. M.S. Brookhart et al, US patent 5866663 to DuPont. Feb 2. (1999)

  4. M.S. Brookhart et al, US patent 5880323, March 9, 1999 to DuPont

  5. M.D. Leatherman, S.A. Svejda, L.K. Johnson, M. Brookhart, J. Am. Chem. Soc. 125, 3068 (2003)

    Article  CAS  Google Scholar 

  6. I.E. Soshnikov et al., Organometallics 34(13), 3222 (2015)

    Article  CAS  Google Scholar 

  7. J. Scott, S. Gambarotta, I. Korobkov, Q. Knijnenburg, B. de Bruin, P.H.M. Budzelaar, J. Am. Chem. Soc. 127, 17204 (2005)

    Article  CAS  Google Scholar 

  8. C. Tejel, M.P. del Río, M.A. Ciriano, E.J. Reijerse, F. Hartl, S. Záliš, D.G.H. Hetterscheid, N. Tsichlis i Spithas, B. de Bruin, Chem. Eur. J. 15, 11878 (2009)

    Article  CAS  Google Scholar 

  9. E. Rijnberg, J. Boersma, J.T.B.H. Jastrzebski, M.T. Lakin, A.L. Spek, G. van Koten, Organometallics 16, 3158 (1997)

    Article  CAS  Google Scholar 

  10. I.L. Fedushkin, A.A. Skatova, V.A. Chudakova, V.K. Cherkasov, S. Dechert, H. Schumann, Russ. Chem. Bull. 53(10), 2142 (2004)

    Article  CAS  Google Scholar 

  11. S.K. Petrovskii, V.V. Saraev, N.S. Gurinovich, E.B. Kuznetsova, D.A. Matveev, P.B. Kraikivskii, J. Mol. Struct. 1084, 302 (2014)

    Article  Google Scholar 

  12. W.C. Anderson Jr., J.L. Rhinehart, A.G. Tennyson, B.K. Long, J. Am. Chem. Soc. 138(3), 774 (2016)

    Article  CAS  Google Scholar 

  13. N.S. Gurinovich, S.K. Petrovskii, V.V. Saraev, I.V. Salii, Kinet. Catal. 57(4), 523 (2016)

    Article  CAS  Google Scholar 

  14. S.A. Svejda, L.K. Johnson, M. Brookhart, J. Am. Chem. Soc. 121, 10634 (1999)

    Article  CAS  Google Scholar 

  15. M. Brookhart, M.L.H. Green, J. Organomet. Chem. 250, 395 (1983)

    Article  CAS  Google Scholar 

  16. W. Gao, L. Xin, Zh Hao, G. Li, J.-H. Su, L. Zhou, Y. Mu, Chem. Commun. 71, 7004 (2015)

    Article  Google Scholar 

  17. F.K. Schmidt et al., Petr. Chem. 16(4), 547 (1976)

    Google Scholar 

  18. G. Myagmarsuren, O.-Y. Jeong, S.-K. Ihm, Appl. Catal. A 255, 203 (2003)

    Article  CAS  Google Scholar 

  19. G. Myagmarsuren, O.-Y. Jeong, S.-K. Ihm, Appl. Catal. A 275, 271 (2004)

    Article  CAS  Google Scholar 

  20. V.S. Tkach et al., Koord. Khim. 20(8), 618 (1994)

    CAS  Google Scholar 

  21. V.S. Tkach et al., Koord. Khim. 16(4), 574 (1990)

    CAS  Google Scholar 

  22. V.V. Saraev et al., Koord. Khim. 27(11), 803 (2001)

    Article  Google Scholar 

  23. V.V. Saraev, P.B. Kraikivskii, D.A. Matveev, V.V. Bocharova, S.K. Petrovskii, S.N. Zelinskii, A.I. Vilms, H.-F. Klein, J. Mol. Catal. A Chem. 315, 231 (2010)

    Article  CAS  Google Scholar 

  24. P.B. Kraikivskii, V.V. Saraev, D.A. Matveev, V.V. Bocharova, S.K. Petrovskii, M.D. Gotsko, Catal. Commun. 12, 634 (2011)

    Article  CAS  Google Scholar 

  25. E.O. Creaves, C.J.L. Lock, P.M. Mailtlis, Can. J. Chem. 46(24), 3879 (1968)

    Article  Google Scholar 

  26. H. tom Dieck, T. Svoboda, Z. Greiser, B. Naturforsch, Chem. Sci. 36, 823 (1981)

    Google Scholar 

  27. S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42 (2006)

    Article  CAS  Google Scholar 

  28. V.V. Saraev, P.B. Kraikivskii, D.A. Matveev, S.K. Petrovskii, S.V. Fedorov, Koord. Khim. 34(9), 712 (2008)

    Article  CAS  Google Scholar 

  29. I.L. Fedushkin et al., Dalton Trans. 42, 7952 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Russian Foundation for Basic Research (RFBR) (Research Grant No. 16-33-00512) for Financial Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalya S. Gurinovich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 239 kb)

Supplementary material 2 (PNG 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurinovich, N.S., Petrovsky, S.K., Saliy, I.V. et al. Influence of a diimine ligand and an activator on the processes taking place in Brookhart-type nickel catalytic systems. Res Chem Intermed 44, 1935–1944 (2018). https://doi.org/10.1007/s11164-017-3207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3207-x

Keywords

Navigation