Skip to main content
Log in

N,N,N-Tris(tert-butoxycarbonyl)-l-arginine: five isoforms whose obtainment depends on procedure and scrupulous NMR confirmation of their structures

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

l-arginine is often covalently linked to vectors for gene or drug delivery as a means of increasing their transfection activity and reducing toxicity. This strategy relies on the protection of basic nitrogen atoms, for example, by employing the tert-butoxycarbonyl group. Our aim in the present work was to prepare the widely described α N, ω N, ω′ N-tris(tert-butyloxycarbonyl)-l-arginine as a single isomer in high yield and with high levels of purity for use in the esterification of dendrimers with several peripheral hydroxyl groups. Following three reported protocols which assured this goal, we observed the unexpected formation of four additional isomers. Using the first procedure, α N, ω N, ω′ N-tris(tert-butyloxycarbonyl)-l-arginine was never obtained. The second procedure delivered the desired compound as a mixture of geometric isomers (E/Z), while the third protocol led to a single isomer in high yield and purity, but with an unreported symmetrical structure. Since Boc protection is transient, this discovery would seem to be of little interest, but preliminary results from an ongoing investigation of the behavior of each of the isomers obtained in the esterification reactions of interest has shown that their reactivity depends on their structure. Although this research is ongoing, here we report a detailed description of these unexpected results, along with an NMR investigation focusing on the double-bond geometry and position which enabled confirmation of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. A.A. Reyes, M.L. Purkerson, I. Karl, S. Klahr, Am. J. Kidney Dis. 20, 168 (1999). https://doi.org/10.1016/S0272-6386(12)80546-4

    Article  Google Scholar 

  2. A. Amore, B. Gianoglio, D. Ghigo, L. Peruzzi, M.G. Porcellini, F. Bussolino, C. Costamagna, G. Cacace, G. Picciotto, G. Mazzucco et al., Kidney Int. 47, 1507 (1995). https://doi.org/10.1038/ki.1995.213

    Article  CAS  Google Scholar 

  3. I. Nakase, H. Akita, K. Kogure, A. Gräslund, Ü. Langel, H. Harashima, S. Futaki, Acc. Chem. Res. 45, 1132 (2012). https://doi.org/10.1021/ar200256e

    Article  CAS  Google Scholar 

  4. I. Nakase, G. Tanaka, S. Futaki, Mol. Biosyst. 9, 855 (2013). https://doi.org/10.1039/c2mb25467k

    Article  CAS  Google Scholar 

  5. C. Liu, X. Liu, P. Rocchi, F. Qu, J.L. Iovanna, L. Peng, Bioconjug. Chem. 25, 521 (2014). https://doi.org/10.1021/bc4005156

    Article  CAS  Google Scholar 

  6. X. Liu, C. Liu, J. Zhou, C. Chen, F. Qu, J.J. Rossi, P. Rocchi, L. Peng, Nanoscale 7, 3867 (2015). https://doi.org/10.1039/c4nr04759a

    Article  CAS  Google Scholar 

  7. J.B. Kim, J.S. Choi, K. Nam, M. Lee, J.S. Park, J.K. Lee, J. Control. Release 114, 110 (2006). https://doi.org/10.1016/j.jconrel.2006.05.011

    Article  CAS  Google Scholar 

  8. T. Kim, C.Z. Bai, K. Nam, J. Park, J. Control. Release 136, 132 (2009). https://doi.org/10.1016/j.jconrel.2009.01.028

    Article  CAS  Google Scholar 

  9. Q. Peng, J. Zhu, Y. Yu, L. Hoffman, X. Yang, J. Biomater. Sci. Polym. Ed. 26, 1163 (2015). https://doi.org/10.1080/09205063.2015.1080482

    Article  CAS  Google Scholar 

  10. S. Alfei, S. Castellaro, G. B. Taptue, Org. Commun. 10, 144 (2017). http://doi.org/10.25135/acg.oc.22.17.07.034

  11. S. Alfei, S. Castellaro, Macromol. Res. 25 (2017). https://doi.org/10.1007/s13233-017-5160-3

  12. H. Konno, K. Kubo, H. Makabe, E. Toshiro, N. Hinoda, K. Nosakaa, K. Akaji, Tetrahedron 63, 9502 (2007). https://doi.org/10.1016/j.tet.2007.06.082

    Article  CAS  Google Scholar 

  13. F. Prati, A. Goldman-Pinkovich, F. Lizzi, F. Belluti, R. Koren et al., PLoS ONE 9, 107994 (2014). https://doi.org/10.1371/journal.pone.0107994.g005

    Article  Google Scholar 

  14. M. Shuai, X. Zengping, H. Ge, Z. Lihui, Z. Zhanjuan, G. Jianghong, J. Haiying, L. Tianjun, Eur. J. Med. Chem. 92, 35 (2015). https://doi.org/10.1016/j.ejmech.2014.12.029

    Article  Google Scholar 

  15. J. Izdebski, T. Gers, D. Kunce, P. Markovsky, J. Pept. Sci. 11, 60 (2005). https://doi.org/10.1002/psc.585

    Article  CAS  Google Scholar 

  16. M.A. Jones, A.D. Hislop, J.S. Snaith, Org. Biomol. Chem. 4, 3769 (2006). https://doi.org/10.1039/b611170j

    Article  CAS  Google Scholar 

  17. O. Keller, W.E. Keller, G. Van Look, G. Wersin, Org. Synth. 63, 160 (1985). https://doi.org/10.15227/orgsyn.063.0160

    Article  CAS  Google Scholar 

  18. F. Jahani, M. Tajbakhsh, S. Khaksar, M. Reza, Azizi. Monatsh. Chem. 142, 1035 (2011). https://doi.org/10.1007/s00706-011-0534-2

    Article  CAS  Google Scholar 

  19. V.F. Pozdnev, Int. J. Pept. Protein Res. 44, 36 (1994). https://doi.org/10.1111/j.1399-3011.1994.tb00402.x

    Article  CAS  Google Scholar 

  20. Ø. Jacobsen, H. Maekawa, N.-H. Ge, C.H. Görbitz, P. Rongved, O.P. Ottersen, M.R. Amiry-Moghaddam, J. Klaveness, J. Org. Chem. 76, 1228 (2011). https://doi.org/10.1021/jo101670a

    Article  CAS  Google Scholar 

  21. J. Hlavacek, J. Pıcha, V. Vanek, J. Jiracek, J. Slaninova, V. Fucık, M. Budesınsky, D. Gilner, R.C. Holz, Aminoacid 38, 1155 (2010). https://doi.org/10.1007/s00726-009-0326-8

    CAS  Google Scholar 

  22. K. Feichtinger, C. Zapf, H.L. Sings, M. Goodman, J. Org. Chem. 63, 3804 (1998). https://doi.org/10.1021/jo980425s

    Article  CAS  Google Scholar 

  23. V.F. Pozdnev, Bioorg. Khim. 12, 1013 (1986)

    CAS  Google Scholar 

  24. E. Schnabel, Liebigs Ann. Chem. 702, 188 (1967). https://doi.org/10.1002/jlac.19677020123

    Article  CAS  Google Scholar 

  25. X. Fang, J. Mao, R.M. Cory, D.M. McKnightc, K. Schmidt-Rohra, Magn. Reson. Chem. 49, 755 (2011). https://doi.org/10.1002/mrc.2816

    Article  Google Scholar 

  26. S. Fenner, Z.E. Wilson, S.V. Ley, Chem. Eur. J. 22, 15902 (2016). https://doi.org/10.1002/chem.201603157

    Article  CAS  Google Scholar 

  27. L. Zservas, M. Winitz, J.P. Greenstein, J. Org. Chem. 22, 1515 (1957). https://doi.org/10.1021/jo01362a052

    Article  Google Scholar 

  28. L. Zservas, T.T. Otani, M. Vinitz, J.P. Greenstein, J. Am. Chem. Soc. 81, 2878 (1959). https://doi.org/10.1021/ja01520a064

    Article  Google Scholar 

  29. A.J. Rosenberg, D.A. Clark, Org. Lett. 14, 4678 (2012). https://doi.org/10.1021/ol3021226

    Article  CAS  Google Scholar 

  30. A.N. Chulin, I.L. Rodionov, L.K. Baidakova, L.N. Rodionova, T.A. Balashova, V.T. Ivanov, J. Pept. Sci. 11, 175 (2005). https://doi.org/10.1002/psc.611

    Article  CAS  Google Scholar 

  31. R.M. Lanigan, P. Starkov, T.D. Sheppard, J. Org. Chem. 78, 4512 (2013). https://doi.org/10.1021/jo400509n

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by University of Genoa (Progetti di Ricerca di Ateneo). The authors wish to thank Dr Gaby Brice Taptue for language assistance and Mr Gagliardo Osvaldo for elemental analysis. A special thanks to Professor Andrea Spallarossa for calculating the energies of the tautomers and rotamers, contributing to the realization of Figs. S27 and S28 in the Online Resource, and providing professional advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Alfei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfei, S., Castellaro, S. N,N,N-Tris(tert-butoxycarbonyl)-l-arginine: five isoforms whose obtainment depends on procedure and scrupulous NMR confirmation of their structures. Res Chem Intermed 44, 1811–1832 (2018). https://doi.org/10.1007/s11164-017-3199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3199-6

Keywords

Navigation