Abstract
With increasing industrial development, heavy metal pollution, e.g., cadmium (Cd) pollution, is increasingly serious in soil and water environments. This study investigated the sorption performance of nano-montmorillonite (NMMT) for Cd ions. Adsorption experiments were carried out to examine the effects of the initial metal ion concentration (22.4–224 mg/L), pH (2.5–7.5), contact time (2–180 min) and temperature (15–40 °C). A simulated acid rain solution was prepared to study the desorption of Cd adsorbed on NMMT. After the adsorption or desorption process, the supernatant was analyzed using a flame atomic absorption spectrometry method. The Cd removal rate increased as the pH and contact time increased but decreased as the initial metal ion concentration increased. The maximum adsorption capacity was estimated to be 17.61 mg/g at a Cd2+ concentration of 22.4 mg/L. The sorption process can be described by both the Langmuir and Freundlich models, and the kinetic studies revealed that the pseudo-second-order model fit the experimental data. The Cd desorption rate when exposed to simulated acid rain was less than 1%. NMMT possesses a good adsorption capacity for Cd ions. Additionally, ion exchange was the main adsorption mechanism, but some precipitation or surface adsorption also occurred.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
F.A. Pereira, K.S. Sousa, G.R. Cavalcanti, Int. J. Biol. Macromol. 61, 471–478 (2013)
J.H. Chen, Y.J. Wang, D.M. Zhou, Y.X. Cui, S.Q. Wang, Y.C. Chen, Environ. Progr. Sustain. Energy 29(2), 233–241 (2009)
K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Alex. Eng. J. 54(3), 757–767 (2015)
X. Zhao, T. Jiang, B. Du, Chemosphere 99, 41–48 (2014)
Z. Zhu, C. Gao, Y.L. Wu, L.F. Sun, X.L. Huang, W. Ran, Q.R. Shen, Biores. Technol. 147, 378–386 (2013)
H.B. Hadjltaief, A. Sdiri, W. Ltaief, P.D. Costa, M.E. Galvez, M.B. Zina, CR Chim. (2017). doi:10.1016/j.crci.2017.01.009
V. Masindi, W.M. Gitari, J. Clean. Prod. 112, 1077–1085 (2016)
A. Sdiri, M. Khairy, S. Bouaziz, S. El-Safty, Appl. Clay Sci. 126, 89–97 (2016)
C. Chen, H.B. Liu, T.H. Chen, D. Chen, R.L. Frost, Appl. Clay Sci. 118, 239–247 (2015)
Y. Li, J.D. Wang, X.J. Wang, J.F. Wang, Ind. Eng. Chem. Res. 51(18), 6520–6528 (2012)
R. Zhu, Q. Chen, Q. Zhou, Y.F. Xi, J.X. Zhu, H.P. He, Appl. Clay Sci. 123, 239–258 (2016)
Y. Fernández-Nava, M. Ulmanu, I. Anger, E. Maranon, L. Castrillon, Water Air Soil Pollut. 215(1–4), 239–249 (2010)
D. Kołodyńska, J. Krukowska, P. Thomas, Chem. Eng. J. 307, 353–363 (2017)
C.G. Lee, S. Lee, J.A. Park, C. Park, S.J. Lee, S.B. Kim, B. An, S.T. Yun, S.H. Lee, J.W. Choi, Chemosphere 166, 203–211 (2017)
K.G. Bhattacharyya, S.S. Gupta, Adv. Coll. Interface. Sci. 140(2), 114–131 (2008)
C. Piccirillo, S.I.A. Pereira, A.P.G.C. Marques, R.C. Pullar, D.M. Tobaldi, M.E. Pintado, P.M.L. Castro, J. Environ. Manag. 121, 87–95 (2013)
K. Seifpanahi Shabani, F. Doulati Ardejani, K. Badii, M. Ebrahim Olya, Arab. J. Chem. 243, 201–207 (2013)
V. Masindi, W.M. Gitari, J. Environ. Chem. Eng. 3, 2416–2425 (2015)
Z.L. Zhao, X.Q. Wang, C. Zhao, X.G. Zhu, S.Y. Du, J. Colloid Interface Sci. 345(2), 154–159 (2010)
A. Günay, B. Ersoy, S. Dikmen, A. Evcin, Adsorption 19(2–4), 757–768 (2013)
M. Vinuth, H.S.B. Naik, K.C. Sekhar, J. Manjanna, B.M. Vinoda, Procedia Earth Planet. Sci. 11, 275–283 (2015)
H. Kohay, A. Izbitski, Y.G. Mishael, Environ. Sci. Technol. 49(15), 9280–9288 (2015)
T.P. Chang, J.Y. Shih, K.M. Yang, T.C. Hsiao, J. Mater. Sc. 42(17), 7478–7487 (2007)
P. Liu, L. Zhang, Sep. Purif. Technol. 58(1), 32–39 (2007)
Z.Y. Wang, C. Wang, P.F. Wang, J. Qian, J. Hou, Y.H. Ao, Water Air Soil Pollut. 225(9), 2124 (2014)
A. Agrawal, K.K. Sahu, J. Hazard. Mater. 137, 915–924 (2006)
V. Masindi, M.W. Gitari, H. Tutu, M. Debeer, J. Water Process Eng. 15, 2–17 (2017)
V. Masindi, W.M. Gitari, H. Tutu, J. Water Reuse Desalin. 382, 391 (2016)
B.F. UrbanoF, B.L. Rivas, J. Chem. Technol. Biotechnol. 89(2), 249–258 (2014)
V. Masindi, M.W. Gitari, H. Tutu, M. DeBeer, J. Water Process Eng. 8, 227–240 (2015)
W.H. Liu, Y.Y. Li, Q.X. Zhao, Research on and application of modified bentonite in deactivating and repairing heavy metal-contaminated soil (China Environmental Science Press, Beijing, 2014)
G.L. Guo, Y. Zhang, C. Zhang, S.J. Wang, Z.G. Yan, F.S. Li, Geoderma 200–201, 108–113 (2013)
J. Madejova, Vib. Spectrosc. 31, 1–10 (2003)
A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Water Air Soil Pollut. 223, 1191–1204 (2011)
M. Abbas, S. Kaddour, M. Trari, J. Ind. Eng. Chem. 20(3), 745–751 (2014)
V. Masindi, W.M. Gitari, H. Tutu, Water Pract. Technol. 12, 186–201 (2017)
D.Z. Wang, X. Jiang, W. Rao, J.Z. He, Ecol. Complex. 6(4), 432–437 (2009)
Acknowledgements
This study was financially supported by the National Key Research and Development Program of China (2016YFD0801003) and the Natural Science Foundation of China (No. 41501526).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Liu, W., Zhao, C., Wang, S. et al. Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations. Res Chem Intermed 44, 1441–1458 (2018). https://doi.org/10.1007/s11164-017-3178-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11164-017-3178-y