Skip to main content

Advertisement

Log in

Nanosized amorphous tantalum oxide: a highly efficient photocatalyst for hydrogen evolution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A facile synthetic route for the preparation of highly active tantalum oxide photocatalysts was developed without using any surfactants. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectra, thermogravimetric analysis, and Raman, and their activity was evaluated by photocatalytic H2 evolution under UV–Vis light irradiation (320 < λ < 780 nm). To elucidate the photocatalytic activity, the nitrogen adsorption–desorption isotherms experiment, ultraviolet–visible diffuse reflectance spectra, photoluminescence and steady-state surface photo-voltage measurements were performed. The recyclable photocatalytic properties were also conducted to demonstrate its high stability. Notably, the obtained samples prepared by direct evaporation are amorphous and own a large specific surface area, and furthermore exhibit a far greater photocatalytic performance than commercial Ta2O5. On the basis of the above experiment results, the enhanced photocatalytic activity of a-Ta x O y could be ascribed to the efficient separation and migration of photo-generated carriers as well as the higher energy of the conduction band minimum. Therefore, the direct evaporation synthesis opens a door to the facile preparation of highly active amorphous photocatalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q.P. Lu, Y.F. Yu, Q.L. Ma, B. Chen, H. Zhang, Adv. Mater. 28, 1917 (2015)

    Article  Google Scholar 

  2. H. Tüysüz, C.K. Chan, Nano Energy 2, 116 (2013)

    Article  Google Scholar 

  3. T. Grewe, M. Meggouh, H. Tüysüz, Chem. Asian J. 11, 22 (2016)

    Article  CAS  Google Scholar 

  4. J. Seo, T. Takata, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, K. Domen, J. Am. Chem. Soc. 137, 12780 (2015)

    Article  CAS  Google Scholar 

  5. S.S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S.S.K. Ma, F.X. Zhang, K. Domen, C. Li, Angew. Chem. Int. Ed. 54, 8498 (2015)

    Article  CAS  Google Scholar 

  6. Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya, N. Tsunoji, K.J. Komaguchi, T. Sano, Y. Bando, D. Golberg, Y. Sugahara, Angew. Chem. Int. Ed. 55, 3600 (2016)

    Article  CAS  Google Scholar 

  7. A. Lwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc. 138, 10260 (2016)

    Article  Google Scholar 

  8. Q. Wang, T. Hisatomi, Q.X. Jia, H. Tokudome, M. Zhong, C.Z. Wang, Z.H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y.B. Li, I.D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 15, 611 (2016)

    Article  CAS  Google Scholar 

  9. B.H. Wu, D.Y. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, G.D. Stucky, J. Am. Chem. Soc. 138, 1114 (2016)

    Article  CAS  Google Scholar 

  10. S.P. Phivilay, A.A. Puretzky, K. Domen, I.E. Wachs, ACS Catal. 3, 2920 (2013)

    Article  CAS  Google Scholar 

  11. R. Nakamura, K. Asano, M. Ishimaru, K. Sato, M. Takahashi, H. Numakura, J. Mater. Res. 29, 753 (2014)

    Article  CAS  Google Scholar 

  12. H. Sakamoto, T. Ohara, N. Yasumoto, Y. Shiraishi, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 137, 9324 (2015)

    Article  CAS  Google Scholar 

  13. C.S. Pan, T. Takata, K. Kumamoto, S.S.K. Ma, K. Ueda, T. Minegishi, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, J. Mater. Chem. A 4, 4544 (2016)

    Article  CAS  Google Scholar 

  14. J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Chem. Asian J. 7, 642 (2012)

    Article  CAS  Google Scholar 

  15. S. Anandan, N. Pugazhenthiran, T. Selvamani, S.-H. Hsieh, G.J. Lee, J.J. Wu, Catal. Sci. Technol. 2, 2502 (2012)

    Article  CAS  Google Scholar 

  16. A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 136, 17530 (2014)

    Article  CAS  Google Scholar 

  17. Y.G. Zhao, J.J. Liu, C.G. Liu, F. Wang, Y. Song, ACS Catal. 6, 4127 (2016)

    Article  CAS  Google Scholar 

  18. Tobias Grewe, Harun Tüysüz, ACS Appl. Mater. Interfaces 7, 23153 (2015)

    Article  CAS  Google Scholar 

  19. J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z.Y. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 6, 1502313 (2016)

    Article  Google Scholar 

  20. N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu, K.Q. Nie, X.H. Sun, J.H. Guo, S.R. Leone, P.D. Yang, J. Am. Chem. Soc. 137, 7448 (2015)

    Article  CAS  Google Scholar 

  21. H. Vrubel, X.L. Hu, ACS Catal. 3, 2002 (2013)

    Article  CAS  Google Scholar 

  22. W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, J. Am. Chem. Soc. 136, 2843 (2014)

    Article  CAS  Google Scholar 

  23. J.W. Hennek, M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 134, 9593 (2012)

    Article  CAS  Google Scholar 

  24. J. Huang, Y.Y. Liu, L.F. Lu, L. Li, Res. Chem. Intermed. 38, 487 (2012)

    Article  CAS  Google Scholar 

  25. Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008)

    Article  CAS  Google Scholar 

  26. H.X. Dang, Y.M. Lin, K.C. Klavetter, T.H. Cell, A. Heller, C.B. Mullins, ChemElectroChem 1, 158 (2014)

    Article  Google Scholar 

  27. C. Joseph, P. Bourson, M.D. Fontana, J. Raman Spectrosc. 43, 1146 (2012)

    Article  CAS  Google Scholar 

  28. T.T.H. Imai, S. Miyoshi, P.-A. Glans, J.H. Guo, S. Yamaguchi, Phys. Chem. Chem. Phys. 13, 17013 (2011)

    Article  Google Scholar 

  29. Y.S. Chen, J.L.G. Fierro, T. Tanaka, I.E. Wachs, J. Phys. Chem. B 107, 5243 (2003)

    Article  CAS  Google Scholar 

  30. P.S. Dobal, R.S. Katiyar, Y. Jiang, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 31, 1061 (2000)

    Article  Google Scholar 

  31. J. Jiang, M.R. Gao, W.C. Sheng, Y.S. Yan, Angew. Chem. Int. Ed. 55, 1 (2016)

    Article  CAS  Google Scholar 

  32. R.V. Gonçalves, R. Wojcieszak, P.M. Uberman, S.R. Teixeira, L.M. Rossi, Phys. Chem. Chem. Phys. 16, 5755 (2014)

    Article  Google Scholar 

  33. M.M. Zhu, Z.J. Zhang, W. Miao, Appl. Phys. Lett. 89, 021915 (2006)

    Article  Google Scholar 

  34. X.J. Wang, W.Y. Yang, F.T. Li, J. Zhao, R.H. Liu, S.J. Liu, B. Li, J. Hazard. Mater. 292, 126 (2015)

    Article  CAS  Google Scholar 

  35. T. Grewe, H. Tüysüz, Chemsuschem 8, 3084 (2015)

    Article  CAS  Google Scholar 

  36. Y.F. Zhu, F. Yua, Y. Man, Q.Y. Tiana, Y. Hea, N. Wu, J. Solid State Chem. 178, 224 (2005)

    Article  CAS  Google Scholar 

  37. L.Z. Tao, B. Yan, Y. Liang, B.Q. Xu, Green Chem. 15, 696 (2013)

    Article  CAS  Google Scholar 

  38. L.M. Guo, H. Hagiwara, S. Ida, T. Daio, T. Ishihara, A.C.S. Appl, Mater. Interfaces 5, 11080 (2013)

    Article  CAS  Google Scholar 

  39. N.N. Zhang, H.L. Xiong, Y.L. Liu, R.Q. Li, Z.H. Leng, S.C. Gan, Appl. Surf. Sci. 357, 255 (2015)

    Article  CAS  Google Scholar 

  40. J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z.H. Kang, Science 347, 970 (2015)

    Article  CAS  Google Scholar 

  41. M. Ziolek, I. Sobczak, P. Decyk, K. Sobanska, P. Pietrzyk, Z. Sojka, Appl. Catal. B: Environ. 164, 288 (2015)

    Article  CAS  Google Scholar 

  42. G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, A.C.S. Appl, Mater. Interfaces 8, 122 (2016)

    Article  CAS  Google Scholar 

  43. H.M. Fan, T.F. Jiang, H.Y. Li, D.J. Wang, L.L. Wang, J.L. Zhai, D.Q. He, P. Wang, T.F. Xie, J. Phys. Chem. C 116, 2425 (2012)

    Article  CAS  Google Scholar 

  44. T. Grewe, H. Tysüüz, J. Mater. Chem. A 4, 3007 (2016)

    Article  CAS  Google Scholar 

  45. M. Humayun, A. Zada, Z.J. Li, M.Z. Xie, X.L. Zhang, Y. Qu, F. Raziq, L.Q. Jing, Appl. Catal. B: Environ. 180, 219 (2016)

    Article  CAS  Google Scholar 

  46. J.Y. Duan, W.D. Shi, L.L. Xu, G.Y. Mou, Q.L. Xin, J.G. Guan, Chem. Commun. 48, 7301 (2012)

    Article  CAS  Google Scholar 

  47. H.J. Yu, Y.F. Zhao, C. Zhou, L. Shang, Y. Peng, Y.H. Cao, L.Z. Wu, C.-H. Tung, T.R. Zhang, J. Mater. Chem. A 2, 3344 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NSFC (Grants 21025104, 21271171 and 91022018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshe Li.

Additional information

Special Issue of the 1st International Symposium on Photocatalysis at Fuzhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, L. & Li, G. Nanosized amorphous tantalum oxide: a highly efficient photocatalyst for hydrogen evolution. Res Chem Intermed 43, 5011–5024 (2017). https://doi.org/10.1007/s11164-017-3052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3052-y

Keywords

Navigation