Skip to main content

Advertisement

Log in

Electricity production of a microbial fuel cell stack integrated into a sink drain pipe

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, five two-chambered microbial fuel cells (MFCs) were hydraulically connected in series to constitute a MFC stack, which was integrated into a sink drain pipe for kitchen wastewater treatment. Performances of the MFC stack operating with artificial and real wastewater were studied. Considering the practical application, the voltage response to different flow rates and temperatures of the substrate was also investigated. It was found that the MFC stack could achieve a reasonable performance, with an average open circuit voltage of 3.44 ± 0.02 V, a peak power of 45.74 ± 1.39 mW (i.e. 809.27 mW/m2) and a coulombic efficiency of 78.2 ± 3.6 %. The MFC performance was disturbed by the flushing process, but could recover after a few minutes. The results also suggest that the MFC stack can operate after flushing by the substrate at 50 °C, above which irreversible performance deterioration was observed. The proposed MFC stack is expected to serve as a potential power source for lighting and low-power devices, especially in off-grid rural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.E. Logan, Microbial Fuel Cells (Wiley, London, 2008)

    Google Scholar 

  2. S. Atkinson, Membr. Technol. 2006, 8 (2006)

    Google Scholar 

  3. B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol. 40, 5181 (2006)

    Article  CAS  Google Scholar 

  4. B.E. Logan, Appl. Microbiol. Biotechnol. 85, 1665 (2010)

    Article  CAS  Google Scholar 

  5. H. Liu, R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol. 38, 2281 (2004)

    Article  CAS  Google Scholar 

  6. K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Environ. Sci. Technol. 39, 8077 (2005)

    Article  CAS  Google Scholar 

  7. Z. He, S.D. Minteer, L.T. Angenent, Environ. Sci. Technol. 39, 5262 (2005)

    Article  CAS  Google Scholar 

  8. L. Zhang, J. Li, X. Zhu, D. Ye, Q. Liao, Chem. Eng. J. 223, 623 (2013)

    Article  CAS  Google Scholar 

  9. X. Zhu, L. Zhang, J. Li, Q. Liao, D. Ye, Int. J. Hydrog. Energy 38, 15716 (2013)

    Article  CAS  Google Scholar 

  10. F. Zhang, Z. Ge, J. Grimaud, J. Hurst, Z. He, Environ. Sci. Technol. 47, 4941 (2013)

    Article  CAS  Google Scholar 

  11. Y. Kim, M.C. Hatzell, A.J. Hutchinson, B.E. Logan, Energy Environ. Sci. 4, 4662 (2011)

    Article  CAS  Google Scholar 

  12. B.H. Kim, I.S. Chang, G.M. Gadd, Appl. Microbiol. Biotechnol. 76, 485 (2007)

    Article  CAS  Google Scholar 

  13. B. Wang, J.-I. Han, Biotechnol. Lett. 31, 387 (2009)

    Article  CAS  Google Scholar 

  14. L. Zhuang, Y. Zheng, S. Zhou, Y. Yuan, H. Yuan, Y. Chen, Bioresour. Technol. 106, 82 (2012)

    Article  CAS  Google Scholar 

  15. L. Zhuang, Y. Yuan, Y. Wang, S. Zhou, Bioresour. Technol. 123, 406 (2012)

    Article  CAS  Google Scholar 

  16. L. Zhuang, S. Zhou, Electrochem. Commun. 11, 937 (2009)

    Article  CAS  Google Scholar 

  17. S.-E. Oh, B.E. Logan, J. Power Sources 167, 11 (2007)

    Article  CAS  Google Scholar 

  18. A. Dekker, A.T. Heijne, M. Saakes, H.V.M. Hamelers, C.J.N. Buisman, Environ. Sci. Technol. 43, 9038 (2009)

    Article  CAS  Google Scholar 

  19. R.A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman, Trends Biotechnol. 26, 450 (2008)

    Article  CAS  Google Scholar 

  20. A. Janicek, Y. Fan, H. Liu, Biofuels 5, 79 (2014)

    Article  CAS  Google Scholar 

  21. K. Scott, C. Murano, G. Rimbu, J. Appl. Electrochem. 37, 1063 (2007)

    Article  CAS  Google Scholar 

  22. Y. Hong, D.F. Call, C.M. Werner, B.E. Logan, Biosens. Bioelectron. 28, 71 (2011)

    Article  CAS  Google Scholar 

  23. S.E. Oh, J.R. Kim, J.-H. Joo, B.E. Logan, Water Sci. Technol. 60, 1311 (2009)

    Article  CAS  Google Scholar 

  24. R.A. Rozendal, H.V.M. Hamelers, C.J.N. Buisman, Environ. Sci. Technol. 40, 5206 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural and Science Foundation of China (No. 51376203), the National Natural Science Funds for Distinguished Young Scholar (No. 51325602), the National Natural and Science Foundation of China (No.51276208) and Overseas, Hong Kong & Macao Scholars Collaborated Research Fund (No.51428601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingding Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, D., Deng, B., Li, J. et al. Electricity production of a microbial fuel cell stack integrated into a sink drain pipe. Res Chem Intermed 42, 7689–7700 (2016). https://doi.org/10.1007/s11164-016-2654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2654-0

Keywords

Navigation