Skip to main content
Log in

The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO x and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO x , O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Garcia-Diego, J. Cuellar, Chem. Eng. J. 139, 1 (2008)

    Article  Google Scholar 

  2. C.L. Huang, H.Y. Zhang, Z.Y. Sun, Y.F. Zhao, S. Chen, R.T. Tao, Z.M. Liu, J. Colloid Interface Sci. 364, 2 (2011)

    Google Scholar 

  3. R. Rosiah, N.M. Mahmoud, S. Hamdani, Chem. Eng. J. 132, 1–3 (2007)

    Article  Google Scholar 

  4. T.C. Morata, M. Sliwinska-Kowalska, A.C. Johnson, J. Starck, K. Pawlas, E. Zamyslowska-Szmytke, P. Nylen, E. Toppila, E. Krieg, N. Pawlas, D. Prasher, Int. J. Audiol. 50, 10 (2011)

    Article  Google Scholar 

  5. S. Wongvijitsuk, P. Navasumrit, U. Vattanasit, V. Parnlob, M. Ruchirawat, Int. J. Hyg. Environ. Health 214, 2 (2011)

    Article  Google Scholar 

  6. P.E. Russell, B. Ellis, D.M. Abrams, in Land Reclamation: Extending the Boundaries, ed. by H.M. Moore, H.R. Fox, S. Elliott (Swets & Zeitlinger, Lisse, 2003), p. 351

  7. J.G. Bendall, J. Food Prot. 70, 4 (2007)

    Google Scholar 

  8. C.L. Chang, H. Bai, S.J. Lu, Plasma Chem. Plasma Process. 25, 6 (2005)

    Google Scholar 

  9. F. Adam, A. Lqbal, Chem. Eng. J. 160, 2 (2010)

    Google Scholar 

  10. B. Boulinguiez, P. Le Cloirec, Energy Fuels 24, 9 (2010)

    Article  Google Scholar 

  11. X. Wang, X.Q. Jia, J.P. Wen, Chem. Eng. J. 159, 1–3 (2010)

    Article  Google Scholar 

  12. H.M. Lee, M.B. Chang, Plasma Chem. Plasma Process. 23, 3 (2003)

    Google Scholar 

  13. M.B. Chang, S.J. Yu, Environ. Sci. Technol. 35, 8 (2001)

    Google Scholar 

  14. J.H. Niu, A.M. Zhu, C. Shi, L.L. Shi, Z.M. Song, Y. Xu, Chin. J. Catal. 26, 9 (2005)

    Google Scholar 

  15. H.B. Ma, P. Chen, M.L. Zhang, X.Y. Lin, R. Ruan, Plasma Chem. Plasma Process. 22, 2 (2002)

    Article  Google Scholar 

  16. A. Nasonova, D.J. Kim, W.S. Kim, K.S. Kim, Res. Chem. Intermed. 34, 4 (2008)

    Article  Google Scholar 

  17. J. Chen, J.T. Yang, H. Pan, Q.F. Su, Y.M. Liu, Y. Shi, J. Hazard. Mater. 177, 1–3 (2010)

    Article  Google Scholar 

  18. Y.H. Bai, J.R. Chen, X.Y. Li, C.H. Zhang, Rev. Environ. Contam. T (2009). doi:10.1007/978-1-4419-0032-6_4

    Google Scholar 

  19. J. Meichsner, Lect. Notes phys. (2005). doi:10.1007/11360360_5

    Google Scholar 

  20. C.H. Subrahmanyam, M. Magureanu, A. Renken, L. Kiwi-Minsker, Appl. Catal. B 65, 1–2 (2006)

    Article  Google Scholar 

  21. F. Holzer, U. Roland, F.D. Kopinke, Appl. Catal. B 38, 3 (2002)

    Google Scholar 

  22. X.M. Zhang, J.B. Zhu, X.Y. Li, Z. Liu, X.W. Ren, K.P. Yan, IEEE Trans. Plasma Sci. 39, 6 (2011)

    Google Scholar 

  23. Q. Tang, W.J. Jiang, Y. Cheng, S. Lin, T.M. Lim, J. Xiong, Ind. Eng. Chem. Res. 50, 17 (2011)

    Google Scholar 

Download references

Acknowledgment

This work was financial supported by National Key Technology R&D Program (2010BAK69B24), Shanghai Science and Technology Committee (10dz0583205) and Natural Science Foundation of China (Project No. 41173108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Li, K., Sun, T. et al. The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates. Res Chem Intermed 39, 1021–1035 (2013). https://doi.org/10.1007/s11164-012-0664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0664-0

Keywords

Navigation