Skip to main content

Advertisement

Log in

Reaction kinetics and mechanism for hydrothermal degradation and electrolysis of glucose for producing carboxylic acids

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Electrolysis in subcritical water can convert biomass-derived saccharides into value-added chemicals and fuels without any additives. In this work, we aim to understand reaction behaviours of glucose under subcritical water degradation or electrochemical conditions for the purpose of developing a new method for producing useful carboxylic acids. Degradation of glucose was carried out using a continuous flow-type reactor in subcritical water at various operating conditions, and electrochemical reactions of their product solutions were conducted at identical conditions with a 500-mL batch autoclave. Gaseous products obtained were analyzed by gas chromatography-thermal conductivity detection (GC-TCD), and liquid products were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography-flame ionization detection (GC-FID). The total organic carbon (TOC) in the aqueous product solution was determined by using a TOC analyzer. Based on the experimental results, a reaction pathway for glucose is proposed for subcritical water degradation and electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Ott, M. Bicker, H. Vogel, Green Chem. 8, 214 (2006)

    Article  CAS  Google Scholar 

  2. V. Lehr, M. Sarlea, L. Ott, H. Vogel, Catal. Today 121, 121 (2007)

    Article  CAS  Google Scholar 

  3. M. Watanabe, T. Lida, Y. Aizawa, T.M. Aida, H. Inomata, Bioresour. Technol. 98, 1285 (2007)

    Article  CAS  Google Scholar 

  4. W. Buhler, E. Dinjus, H.J. Ederer, A. Kruse, C. Mas, J. Supercrit. Fluids 22, 37 (2002)

    Article  CAS  Google Scholar 

  5. T. Valliyappan, N.N. Bakhsi, A.K. Dalai, Bioresour. Technol. 99, 4476 (2008)

    Article  CAS  Google Scholar 

  6. M.J. Antal, W.S.L. Mok, J.C. Roy, A.T. Raissi, D.G.M. Anderson, J. Anal. Appl. Pyrolysis 8, 291 (1985)

    Article  CAS  Google Scholar 

  7. Y.S. Stein, M.J. Antal, M.J. Jones, J. Anal. Appl. Pyrolysis 4, 283 (1983)

    Article  CAS  Google Scholar 

  8. H. Kishida, F. Jin, Z. Zhou, T. Moriya, H. Enomoto, Chem. Lett. 34, 11 (2005)

    Article  Google Scholar 

  9. F. Jin, Z. Zhou, H. Enomoto, T. Moriya, H. Higashijima, Chem. Lett. 33, 2 (2004)

    Article  Google Scholar 

  10. Y. Asli, H. Koga, M. Sasaki, M. Goto, J Renew Sustain Energy 1(3), 033112-1 (2009)

    Google Scholar 

  11. M. Sasaki, Wahyudiono, Y. Asli, M. Goto, Fuel Process. Technol. 91, 1125 (2010)

    Article  CAS  Google Scholar 

  12. Y. Asli, H. Koga, M. Sasaki, M. Goto, Ind. Eng. Chem. Res. 49(4), 1520 (2010)

    Article  Google Scholar 

  13. T. Rogalinski, K. Liu, T. Albrecht, G. Brunner, J. Supercrit. Fluid 46, 335 (2008)

    Article  CAS  Google Scholar 

  14. T. Clifford, Fundamentals of supercritical fluids (Oxford University Press, New York, 1998), p. 23

    Google Scholar 

  15. P.E. Savage, Chem. Rev. 99, 603 (1999)

    Article  CAS  Google Scholar 

  16. F.S. Asghari, H. Yoshida, J. Phys. Chem. A 112, 7402 (2008)

    Article  CAS  Google Scholar 

  17. M. Watanabe, Y. Aizawa, T. Iida, C. Levy, T.M. Aida, H. Inomata, Carbohydr. Res. 340, 1931 (2005)

    Article  CAS  Google Scholar 

  18. F. Jin, Z. Zhou, H. Enomoto, T. Moriya, H. Higashijima, Chem. Lett. 33, 126 (2004)

    Article  CAS  Google Scholar 

  19. B.M. Kabyemela, T. Adschiri, R.M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 38, 2888 (1999)

    Article  CAS  Google Scholar 

  20. B.M. Kabyemela, M. Takigawa, T. Adschiri, R.M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 37, 357 (1998)

    Article  CAS  Google Scholar 

  21. Z. Srokol, A.G. Bouche, A. Estrik, R.C.J. Strik, T. Maschmeyer, J.A. Peters, Carbohydr. Res. 339, 1717 (2004)

    Article  CAS  Google Scholar 

  22. H. Ando, T. Sakaki, T. Kokusho, M. Shibata, Y. Uemura, Y. Hatate, Ind. Eng. Chem. Res. 39, 3688 (2000)

    Article  CAS  Google Scholar 

  23. A. Kruse, A. Gawlik, Ind. Eng. Chem. Res. 42, 267 (2003)

    Article  CAS  Google Scholar 

  24. K. Goto, K. Tajima, M. Sasaki, T. Adschiri, K. Arai, Kobunshi Ronbunshu 58 (12), 685 (2001)

    CAS  Google Scholar 

  25. M. Sasaki, K. Goto, K. Tajima, T. Adschiri, K. Arai, Green Chem. 4, 285 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by Kumamoto University Global COE program “Global Initiative for Pulsed Power Engineering”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, M., Oshikawa, T., Watanabe, H. et al. Reaction kinetics and mechanism for hydrothermal degradation and electrolysis of glucose for producing carboxylic acids. Res Chem Intermed 37, 457–466 (2011). https://doi.org/10.1007/s11164-011-0275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0275-1

Keywords

Navigation