Skip to main content
Log in

Theoretical DFT study of the structure and chemical activity of small indium(III) oxide clusters

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The B3LYP/Lanl2dz and B3LYP/SDD levels of DFT have been used to describe the structural properties of small stoichiometric indium(III) oxide clusters. It was shown that the most stable structures for the monomer and dimer are linear and cubic, respectively, in origin. The most stable trimer is due to the formation of three eight-membered and two six-membered rings with alternation of In and O atoms. Among neutral and monocation tetrameric structures, formation of an “arrowhead” isomer is energetically less favorable than the global minimum structure that has eight six-membered and six four-membered rings. In the pentamer and octamer, a few centers of higher coordination number and a variety of In–O bond lengths are observed. The other centers cannot be fitted to the characteristic bixbyite structure, however, so the larger octamer cannot be a good model for mimicking the properties of the In2O3 crystal structure. An H-terminated cluster model consisting of In13O27H15 is proposed that well describes basic features of indium oxide and tin-doped indium oxide (ITO) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  CAS  Google Scholar 

  2. G. Frank, H. Kostlin, Appl. Phys. A 27, 197 (1982)

    Article  Google Scholar 

  3. G.B. Gonzalez, T.O. Mason, J.P. Quintana, O. Warschkow, D.E. Ellis, J.H. Hwang, J.P. Hodges, J.D. Jorgensen, J. Appl. Phys. 96, 3912 (2004)

    Article  CAS  Google Scholar 

  4. O. Warschkow, D.E. Ellis, G.B. Gonzalez, T.O. Mason, J. Am. Ceram. Soc. 86, 1700 (2003)

    Article  CAS  Google Scholar 

  5. H. Kostlin, R. Jost, W. Lems, Phys. Status Solidi A 29, 87 (1975)

    Article  Google Scholar 

  6. G. Frank, H. Kostlin, A. Rabenau, Phys. Status Solidi A 52, 231 (1979)

    Article  CAS  Google Scholar 

  7. G. Frank, E. Kauer, H. Kostlin, Thin Solid Films 77, 107 (1981)

    Article  CAS  Google Scholar 

  8. T. Szorenyi, L.D. Laude, I. Bertoli, Z. Kantor, Z. Geretovsky, J. Appl. Phys. 78, 6211 (1995)

    Article  CAS  Google Scholar 

  9. P.B. Paramonov, S.A. Paniagua, P.J. Hotchkiss, S.C. Jones, N.R. Armstrong, S.R. Marder, J.L. Bredas, Chem. Mater. 20, 5131 (2008)

    Article  CAS  Google Scholar 

  10. S.H. Brewer, S. Franzen, Chem. Phys. 300, 285 (2004)

    Article  CAS  Google Scholar 

  11. F. Matino, L. Persano, V. Arima, D. Pisignano, R.I.R. Blyth, R. Cingolani, R. Rinaldi, Phys. Rev. B 72, 085437 (2005)

    Article  Google Scholar 

  12. N. Skoulidis, H.M. Polatoglou, Thin Solid Films 515, 8728 (2007)

    Article  CAS  Google Scholar 

  13. A. Gupta, H. Cao, K. Parekh, K.V. Rao, A.R. Raju, U.V. Waghmare, J. Appl. Phys. 101, 09N513 (2007)

    Article  Google Scholar 

  14. O. Warschkow, L. Miljacic, D.E. Ellis, G.B. Gonzalez, T.O. Mason, J. Am. Ceram. Soc. 89(2), 616 (2006)

    Article  CAS  Google Scholar 

  15. M. Marezio, Acta Crystallogr. 20, 723 (1966)

    Article  CAS  Google Scholar 

  16. I. Tanaka, M. Mizuno, H. Adachi, Phys. Rev. B 56, 3536 (1997)

    Article  CAS  Google Scholar 

  17. T. Tomita, K. Yamashita, Y. Hayafuji, H. Adachi, Appl. Phys. Lett. 87, 051911 (2005)

    Article  Google Scholar 

  18. G.M. Zhidomirov, V.B. Kazansky, Adv. Catal. 34, 131 (1986)

    Article  CAS  Google Scholar 

  19. J. Sauer, P. Ugliengo, E. Garrone, V.R. Saunders, Chem. Rev. 94, 2095 (1994)

    Article  CAS  Google Scholar 

  20. N.U. Zhanpeisov, M. Anpo, J. Am. Chem. Soc. 126, 9439 (2004)

    Article  CAS  Google Scholar 

  21. S. Kohiki, M. Sasaki, Y. Murakawa, K. Hori, K. Okada, H. Shimooka, T. Tajiri, H. Deguchi, S. Matsushima, M. Oku, T. Shishido, M. Arai, M. Mitome, Y. Bando, Thin Solid Films 505, 122 (2006)

    Article  CAS  Google Scholar 

  22. M. Sierka, J. Dobler, J. Sauer, G. Santambrogio, M. Brummer, L. Woste, E. Janssens, G. Meijer, K.R. Asmis, Angew. Chem. Int. Ed. 46, 3372 (2007)

    Article  CAS  Google Scholar 

  23. N.U. Zhanpeisov, H. Nakatani, H. Fukumura, Proc. 13th ICQC: International Congress on Quantum Chemistry, Helsinki, Finland, C154 (2009)

  24. N.U. Zhanpeisov, 4th General Meeting of ACCMS-VO, Sendai-Matsushima, Japan, O-10 (2010)

  25. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision C.02 (Gaussian, Inc., Wallingford CT, 2004)

    Google Scholar 

  26. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  27. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  28. G. Igelmann, H. Stoll, H. Preuss, Mol. Phys. 65, 1321 (1988)

    Article  CAS  Google Scholar 

  29. N.U. Zhanpeisov, T. Bredow, K. Jug, Catal. Lett. 39, 111 (1996)

    Article  CAS  Google Scholar 

  30. R.W.G. Wyckoff, The analytical expression of the results of the theory of space groups, 2nd edn. (Carnegie Institution of Washington, Washington, 1930)

    Google Scholar 

  31. N.U. Zhanpeisov, H. Fukumura, J. Phys. Chem. C 111, 16941 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the supercomputing resources provided by the Cyberscience Center of Tohoku University and in part by the Research Center for Computational Science, Okazaki, Japan. This work was supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture of Japan (20245002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurbosyn U. Zhanpeisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanpeisov, N.U., Nakatani, H. & Fukumura, H. Theoretical DFT study of the structure and chemical activity of small indium(III) oxide clusters. Res Chem Intermed 37, 647–658 (2011). https://doi.org/10.1007/s11164-011-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0239-5

Keywords

Navigation