Skip to main content

Advertisement

Log in

The continuum between GH deficiency and GH insensitivity in children

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The continuum of growth hormone (GH)-IGF-I axis defects extends from severe to mild GH deficiency, through short stature disorders of undefined aetiology, to GH insensitivity disorders which can also be mild or severe. This group of defects comprises a spectrum of endocrine, biochemical, phenotypic and genetic abnormalities. The extreme cases are generally easily diagnosed because they conform to well-studied phenotypes with recognised biochemical features. The milder cases of both GH deficiency and GH insensitivity are less well defined and also overlap with the group of short stature conditions, labelled as idiopathic short stature (ISS). In this review the continuum model, which plots GH sensitivity against GH secretion, will be discussed. Defects causing GH deficiency and GH insensitivity will be described, together with the use of a diagnostic algorithm, designed to aid investigation and categorisation of these defects. The continuum will also be discussed in the context of growth-promoting endocrine therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collett-Solberg PF, Ambler G, Backeljauw PF, Bidlingmaier M, Biller BMK, Boguszewski MCS, et al. Diagnosis, genetics and therapy of short stature in children: a growth hormone research society international perspective. Horm Res Paediatr. 2019;92:1–14.

    Article  CAS  PubMed  Google Scholar 

  2. Storr HL, Chatterjee S, Foley C, Metherell LA, Backeljauw PF, Rosenfeld RG, et al. Non-classical growth hormone insensitivity (GHI): Characterization of mild abnormalities of GH action. Endocr Rev. 2019;40:475–505.

    Article  Google Scholar 

  3. Cohen P. Problems with reclassification of insulin-like growth factor-I production and action disorders. J Clin Endocrinol Metab. 2006;91:4235–6.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenfeld RG. Insulin-like growth factors and the basis of growth. New Eng J Med. 2003;349:2184–6.

    Article  CAS  PubMed  Google Scholar 

  5. Savage MO, Burren CP, Rosenfeld RG. The continuum of growth hormone-IGF-I axis defects causing short stature: diagnostic and therapeutic challenges. Clin Endocrinol. 2010;72:721–8.

    Article  CAS  Google Scholar 

  6. Ranke MB. Defining insulin-like growth factor deficiency. Horm Res. 2006;65(Suppl 1):9–14.

    Article  CAS  PubMed  Google Scholar 

  7. Wit JM, Clayton PE, Rogol AD, Savage MO, Cohen P. Idiopathic short stature: definition, epidemiology, and diagnostic evaluation. Growth Hormon IGF Res. 2008;18:89–110.

    Article  CAS  Google Scholar 

  8. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH research society. J Clin Endocrinol Metab. 2000;85:3990–3.

    Google Scholar 

  9. Wit JM, Van Unen H. Growth in infants with neonatal growth hormone deficiency. Arch Dis Child. 1992;67:920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maghnie M, Rossi A, di Iorgi N, Gastaldi R, Tortori-Donati P, Lorini R. Hypothalamic-pituitary magnetic resonance imaging in growth hormone deficiency. Expert Rev Endocrinol Metab. 2006;1:413–23.

    Article  CAS  PubMed  Google Scholar 

  11. Ranke MB, Wit JM. Growth hormone – past present and future. Nat Rev Endocrinol. 2018;14:285–300.

    Article  CAS  PubMed  Google Scholar 

  12. Roth J, Glick SM, Yalow RS, Berson SA. Hypoglycaemia: a potent stimulus to secretion of human growth hormone. Science. 1963;140:987–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner IV, Paetzold C, Gausche R, Vogel M, Loerner A, Thiery J, et al. Clinical evidence-based cut-off limits for GH stimulation tests in children with a back-up of results with reference to mass spectrometry. Eur J Endocrinol. 2014;171:389–97.

    Article  CAS  PubMed  Google Scholar 

  14. Grimberg A, DiVall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res Pediatr. 2016;86:361–97.

    Article  CAS  Google Scholar 

  15. Blum WF, Alherbish A, Alsagheir A, El Awwa A, Kaplan W, Koledova E, et al. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr Conn. 2018;7:R212–22.

    Article  CAS  Google Scholar 

  16. Deal C, Hasselmann C, Pfäffle RW, Zimmermann AG, Quigley CA, Child CJ, et al. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency: data from an international observational study. Horm Res Paediatr. 2013;79:283–92.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen RAD, Deal CL, Saenger P, Reiter EO, Ross J, et al. Consensus Statement on Diagnosis and Treatment of Children with Idiopathic Short Stature. A Summary of the GRS/LWPES/ESPE Workshop. J Clin Endocrinol Metab. 2008;93:4210–7.

    Article  CAS  PubMed  Google Scholar 

  18. Hauer NN, Popp B, Schoeller E, Schuhmann S, Heath KE, Hisado-Oliva A, et al. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genet Med. 2018;20:630–8.

    Article  CAS  PubMed  Google Scholar 

  19. Dauber A. Genetic testing for the child with short stature – has the time come to change our diagnostic paradigm? J Clin Endocrinol Metab. 2019;104:2766–9.

    Article  PubMed  Google Scholar 

  20. Dassa Y, Crosnier H, Chevignard M, Viaud M, Personnier C, Fletchner I, et al. Pituitary deficiency and precocious puberty after childhood severe traumatic brain injury: a long-term follow-up prospective study. Eur J Endocrinol. 2019;180:281–90.

    Article  PubMed  Google Scholar 

  21. Attie KM, Carlsson LM, Rundle AC, Sherman BM. Evidence for partial growth hormone insensitivity among patients with idiopathic short stature. The National Cooperative Growth Study. J Pediatr. 1995;127:244–50.

    Article  CAS  PubMed  Google Scholar 

  22. Sjoberg M, Salazar T, Espinosa C, Dagnino A, Avila A, Eggers M, et al. Study of GH sensitivity in chilean patients with idiopathic short stature. J Clin Endocrinol Metab. 2001;86:4375–81.

    Article  CAS  PubMed  Google Scholar 

  23. Pedicelli S, Peschiaroli E, Violi E, Cianfarani S. Controversies in the definition and treatment of idiopathic short stature (ISS). J Clin Res Pediatr Endocrinol. 2009;1:105–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Carlsson LM, Attie KM, Compton PG, Vitangcol RV, Merimee TJ. Reduced concentration of serum growth hormone-binding protein in children with idiopathic short stature. National Cooperative Growth Study. J Clin Endocrinol Metab. 1994;78:1325–30.

    CAS  PubMed  Google Scholar 

  25. Buckway CK, Guevara-Aguirre J, Pratt KL, Burren CP, Rosenfeld RG. The IGF-I generation test revisited: a marker of GH sensitivity. J Clin Endocrinol Metab. 2001;86:5176–83.

    Article  CAS  PubMed  Google Scholar 

  26. Hujeirat Y, Hess O, Shalev S, Tenenbaum-Rakover Y. Growth hormone receptor sequence changes do not play a role in determining height in children with idiopathic short stature. Horm Res. 2006;65:210–6.

    CAS  PubMed  Google Scholar 

  27. David A, Hwa V, Metherell LA, Netchine I, Camacho-Hubner C, Clark AJ, et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev. 2011;32:472–97.

    Article  CAS  PubMed  Google Scholar 

  28. Woods KA, Dastot F, Preece MA, Clark AJL, Postel-Vinay MC, Chatelain PG, et al. Phenotype: genotype relationships in growth hormone insensitivity syndrome. J Clin Endocrinol Metab. 1997;82:3529–35.

    CAS  PubMed  Google Scholar 

  29. Vairamani K, Merjaneh L, Casano-Sancho P, Sanli ME, David A, Metherell LA, et al. Dominant negative GH receptor mutations expands the Spectrum of GHI and IGF-1 deficiency. J Endocr Soc. 2017;1:345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayling RM, Ross RJ, Towner P, Von Laue S, Finidori J, Moutoussamy S, et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat Genet. 1997;16:13–4.

    Article  CAS  PubMed  Google Scholar 

  31. Iida K, Takahashi Y, Kaji H, Nose O, Okimura Y, Abe H, et al. Growth hormone (GH) insensitivity syndrome with high serum GH-binding protein levels caused by a heterozygous splice site mutation of the GH receptor gene producing a lack of intracellular domain. J Clin Endocrinol Metab. 1998;83:531–7.

    CAS  PubMed  Google Scholar 

  32. Metherell LA, Akker SA, Munroe PB, Rose SJ, Caulfield M, Savage MO, et al. Pseudoexon activation as a novel mechanism for disease resulting in atypical growth-hormone insensitivity. Am J Hum Genet. 2001;69:641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chatterjee S, Shapiro L, Rose SJ, Mushtaq T, Clayton PE, Ten SB, et al. Phenotypic Spectrum and responses to recombinant human IGF-1 (rhIGF-1) therapy in patients with homozygous Intronic Pseudoexon growth hormone receptor mutations. Eur J Endocrinol. 2018;178:481–9.

    Article  CAS  PubMed  Google Scholar 

  34. Chatterjee S, Cottrell E, Rose SJ, Mushtaq T, Maharaj AV, Williams J, et al. Growth hormone receptor (GHR) gene transcript heterogeneity may explain phenotypic variability in patients with homozygous GHR Pseudoexon (6Ψ) mutation. Endocr Conn. 2020;9:211–22. https://doi.org/10.1530/EC-20-0026.

    Article  CAS  Google Scholar 

  35. Heath KE, Argente J, Barrios V, Pozo J, Diaz-Gonzalez F, Martos-Moreno GA, et al. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab. 2008;93:1616–24.

    Article  CAS  PubMed  Google Scholar 

  36. Dauber A, Munoz-Calvo MT, Barrios V, Domene HM, Kloverpris S, Serra-Juhe C, et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol Med. 2016;8:363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klammt J, Neumann D, Gevers EF, Andrew SF, Schwartz ID, Rockstroh D, et al. Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun. 2018;9:2105. https://doi.org/10.1038/s41467-018-04521-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Duyvenvoorde HA, van Setten PA, Walenkamp MJ, van Doorn J, Koenig J, Gauguin L, et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J Clin Endocrinol Metab. 2010;95:E363–7.

    Article  PubMed  Google Scholar 

  39. van Duyvenvoorde HA, Kempers MJ, Twickler TB, van Doorn J, Gerver WJ, Noordam C, et al. Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. Eur J Endocrinol. 2008;159:113–20.

    Article  PubMed  CAS  Google Scholar 

  40. Fofanova-Gambetti OV, Hwa V, Wit JM, Domene HM, Argente J, Bang P, et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab. 2010;95:4184–91.

    Article  CAS  PubMed  Google Scholar 

  41. Isik E, Haliloglu B, van Doorn J, Demirbilek H, Scheltinga SA, Losekoot M, et al. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur J Endocrinol. 2017;176:657–67.

    Article  CAS  PubMed  Google Scholar 

  42. Inoue-Lima TH, Vasques GA, Scalco RC, Nakaguma N, Mendonca BB, Arnhold IJ, et al. IGF-I assessed by pubertal status has the best positive predictive power for GH deficiency diagnosis in peripubertal children. J Pediatr Endocrinol Metab. 2019;32:173–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cianfarani S, Liguori A, Boemi S, Maghnie M, Lughetti L, Wasniewska M, et al. Inaccuracy of insulin-like growth factor (IGF) binding protein (IGFBP)-3 assessment in the diagnosis of growth hormone (GH) deficiency from childhood to young adulthood: association to low GH dependency of IGF-II and presence of circulating IGFBP-3 18-kilodalton fragment. J Clin Endocrinol Metab. 2005;90:6028–34.

    Article  CAS  PubMed  Google Scholar 

  44. Hjortebjerg R, Frystyk J. Determination of IGFs and their binding proteins. Best Pract Res Clin Endocrinol Metab. 2013;27:771–81.

    Article  CAS  PubMed  Google Scholar 

  45. Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jorgensen K, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78:744–52.

    CAS  PubMed  Google Scholar 

  46. Juul A, Dalgaard P, Blum WF, Bang P, Hall K, Michaelsen KF, et al. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab. 1995;80:2534–42.

    CAS  PubMed  Google Scholar 

  47. Coutant R, Dorr HG, Gleeson H, Argente J. Diagnosis of endocrine disease: limitations of the IGF1 generation test in children with short stature. Eur J Endocrinol. 2012;166:351–7.

    Article  CAS  PubMed  Google Scholar 

  48. Blum WF, Ranke MB, Savage MO, Hall K. Insulin-like growth factors and their binding proteins in patients with growth hormone receptor deficiency: suggestions for new diagnostic criteria. Kabi Pharmacia study group on insulin-like growth factor-I treatment in growth hormone insensitivity syndromes. Acta Paediatr Suppl. 1992;383:125–6.

    CAS  PubMed  Google Scholar 

  49. Selva KA, Buckway CK, Sexton G, Pratt KL, Tjoeng E, Guevara-Aguirre J, et al. Reproducibility in patterns of IGF generation with special reference to idiopathic short stature. Horm Res. 2003;60:237–46.

    CAS  PubMed  Google Scholar 

  50. Midyett LK, Rogol AD, Van Meter QL, Frane J, Bright GM. Recombinant insulin-like growth factor (IGF)-I treatment in short children with low IGF-I levels: first-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2010;95:611–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kriström B, Aronson AF, Gustafsson J, Halldin M, Ivarsson SA, Nilsson N-O, et al. Growth hormone (GH) dosing during catch-up growth guided by individual responsiveness decreases growth response variability in prepubertal children with GH deficiency or idiopathic short stature. J Clin Endocrinol Metab. 2009;94:483–90.

    Article  PubMed  CAS  Google Scholar 

  52. Bang P, Bjerknes R, Dahlgren J, Dunkel L, Justafsson J, Juul A, et al. A comparison of different definitions of growth response in short prepubertal children treated with growth hormone. Horm Res Paediatr. 2012;75:335–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin O. Savage.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savage, M.O., Storr, H.L. & Backeljauw, P.F. The continuum between GH deficiency and GH insensitivity in children. Rev Endocr Metab Disord 22, 91–99 (2021). https://doi.org/10.1007/s11154-020-09590-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09590-5

Keywords

Navigation