Skip to main content

Advertisement

Log in

The roles of FGF21 in atherosclerosis pathogenesis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

FGF21 is a peptide hormone that regulates homeostasis of lipid and glucose as well as energy metabolism. It is mainly expressed and secreted in liver and adipose tissues, and it is expressed in lower amounts in the aorta. Recent clinical and preclinical studies indicate increased serum FGF21 levels in atherosclerosis patients. Also, FGF21 therapy has been reported to reduce the initiation and progression of atherosclerosis in animal models and in vitro studies. Moreover, growing evidence indicates that administration of exogenous FGF21 induces anti-atherosclerotic effects, because of its ability to reduce lipid profile, alleviation of oxidative stress, inflammation, and apoptosis. Therefore, FGF21 can not only be considered as a biomarker for predicting atherosclerosis, but also induce protective effects against atherosclerosis. Besides, serum levels of FGF21 increase in various diseases including in diabetes mellitus, hypertension, and obesity, which may be related to initiating and exacerbating atherosclerosis. On the other hand, FGF21 therapy significantly improves lipid profiles, and reduces vascular inflammation and oxidative stress in atherosclerosis related diseases. Therefore, further prospective studies are needed to clarify whether FGF21 can be used as a prognostic biomarker to identify individuals at future risk of atherosclerosis in these atherosclerosis-associated diseases. In this review, we will discuss the possible mechanism by which FGF21 protects against atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoefer IE, Steffens S, Ala-Korpela M, Bäck M, Badimon L, Bochaton-Piallat M-L, et al. Novel methodologies for biomarker discovery in atherosclerosis. 2015;36(39):2635–42.

  2. Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.

    Article  CAS  PubMed  Google Scholar 

  3. Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver1. Biochimica et Biophysica Acta. 2000;1492(1):203–6.

  4. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011:jbc. M110. 215889.

  5. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24(10):2050–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–25.

    Article  CAS  PubMed  Google Scholar 

  7. Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states. Mol Pharmacol. 2008;74(2):403–12.

    Article  CAS  PubMed  Google Scholar 

  8. Beenken A, Mohammadi M. The structural biology of the FGF19 subfamily. Endocrine FGFs and Klothos: Springer; 2012. p. 1–24.

    Google Scholar 

  9. Lin Z, Pan X, Wu F, Ye D, Zhang Y, Wang Y, et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding Protein-2 and induction of adiponectin in mice. Circulation. 2015;131:1861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao Y, Liu L, Xu A, Zhou P, Long Z, Tu Y, et al. Serum fibroblast growth factor 21 levels are related to subclinical atherosclerosis in patients with type 2 diabetes. 2015;14(1):72.

  11. Zhang X, Hu Y, Zeng H, Li L, Zhao J, Zhao J, et al. Serum fibroblast growth factor 21 levels is associated with lower extremity atherosclerotic disease in Chinese female diabetic patients. Cardiovasc Diabetol. 2015;14(1):32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan X, Chen J, Zhang C, Zeng J, Zhou S, Zhang Z, et al. Fibroblast growth factor 21 deletion aggravates diabetes-induced pathogenic changes in the aorta in type 1 diabetic mice. Cardiovasc Diabetol. 2015;14(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  14. Talukdar S, Zhou Y, Li D, Rossulek M, Dong J, Somayaji V, et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016;23(3):427–40.

    Article  CAS  PubMed  Google Scholar 

  15. Kharitonenkov A, Wroblewski VJ, Koester A, Chen Y-F, Clutinger CK, Tigno XT, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148(2):774–81.

    Article  CAS  PubMed  Google Scholar 

  16. Lee CH, Woo YC, Chow WS, Cheung CYY, Fong CHY, Yuen MMA, et al. Role of circulating fibroblast growth factor 21 measurement in primary prevention of coronary heart disease among Chinese patients with type 2 diabetes mellitus. J Am Heart Assoc. 2017;6(6):e005344.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou Z-G, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.

    Article  CAS  PubMed  Google Scholar 

  18. Chou R-H, Huang P-H, Hsu C-Y, Chang C-C, Leu H-B, Huang C-C, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci Rep. 2016;6:33953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237(1):208–19.

    Article  CAS  PubMed  Google Scholar 

  20. Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6(3):209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamza SM, Dyck JR. Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Front Physiol. 2014;5:292.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rahman T, Hosen I, Islam MT, Shekhar HU. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3(07):997–1019.

    Article  CAS  Google Scholar 

  23. Gómez-Sámano MÁ, Grajales-Gómez M, Zuarth-Vázquez JM, Navarro-Flores MF, Martínez-Saavedra M, Juárez-León ÓA, et al. Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol. 2017;11:335–41.

    Article  CAS  PubMed  Google Scholar 

  24. Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell Signal. 2017;40:10–21.

    Article  CAS  PubMed  Google Scholar 

  25. Lü Y, Liu J-H, Zhang L-K, Du J, Zeng X-J, Hao G, et al. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells. Chin Med J. 2010;123(23):3417–21.

    PubMed  Google Scholar 

  26. Zhu S, Ma L, Wu Y, Ye X, Zhang T, Zhang Q, et al. FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK-SIRT1 pathway. Acta Biochim Biophys Sin. 2014;46(12):1041–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu W, Wang C, Liu L, Li Y, Li X, Cai J, et al. Effects of fibroblast growth factor 21 on cell damage in vitro and atherosclerosis in vivo. Can J Physiol Pharmacol. 2014;92(11):927–35.

    Article  CAS  PubMed  Google Scholar 

  28. Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol. 2009;4:71–95.

  29. Jiang S, Yan C, Fang Q-C, Zhang Y-L, Liu Y, Deng Y-P, et al. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts ER stress-induced hepatic steatosis. J Biol Chem. 2014:jbc. M114. 565960.

  30. Wan X-s, Lu X-h, Xiao Y-c, Lin Y, Zhu H, Ding T, et al. ATF4-and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. BioMed research international. 2014;2014.

  31. Dong K, Li H, Zhang M, Jiang S, Chen S, Zhou J, et al. Endoplasmic reticulum stress induces up-regulation of hepatic β-klotho expression through ATF4 signaling pathway. Biochem Biophys Res Commun. 2015;459(2):300–5.

    Article  CAS  PubMed  Google Scholar 

  32. Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie. 2013;95(4):692–9.

    Article  CAS  PubMed  Google Scholar 

  33. Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9(12):2277–94.

    Article  CAS  PubMed  Google Scholar 

  34. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 2011;22(22):4390–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Regulation H. The Unfolded Protein Response: From Stress Pathway to. Science. 2011;1209038(1081):334.

    Google Scholar 

  37. Wang X-M, Song S-S, Xiao H, Gao P, Li X-J, Si L-Y. Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells. Cell Physiol Biochem. 2014;34(3):658–71.

    Article  CAS  PubMed  Google Scholar 

  38. Jia H, Cheng J, Zhou Q, Peng J, Pan Y, Han H. Fibroblast growth factor 21 attenuates inflammation and oxidative stress in atherosclerotic rat via enhancing the Nrf1-ARE signaling pathway. Int J Clin Exp Pathol. 2018;11(3):1308–17.

    PubMed  PubMed Central  Google Scholar 

  39. Juan S, Lee T, Tseng K, Liou J, Shyue S, Wu K, et al. Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2001;104(13):1519–25.

    Article  CAS  PubMed  Google Scholar 

  40. Yet S-F, Layne MD, Liu X, Chen Y-H, Ith B, Sibinga NE, et al. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J. 2003;17(12):1759–61.

    Article  CAS  PubMed  Google Scholar 

  41. Biswas SK, Newby DE, Rahman I, Megson IL. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E−/− mice. Biochem Biophys Res Commun. 2005;338(3):1368–73.

    Article  CAS  PubMed  Google Scholar 

  42. Kim S-Y, Jeoung NH, Oh CJ, Choi Y-K, Lee H-J, Kim H-J, et al. Activation of NAD (P) H: quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circ Res. 2009;104(7):842–50.

    Article  CAS  PubMed  Google Scholar 

  43. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 2015;129(2):83–94.

    Article  CAS  PubMed  Google Scholar 

  45. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. J Vasc Med. 2012;2012:1–30.

    Google Scholar 

  46. Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–2031.

  47. Förstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Rev Cardiol. 2008;5(6):338.

    Article  CAS  Google Scholar 

  48. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen D-D, Chen L-Y, Xie J-B, Shu C, Yang T, Zhou S, et al. Tetrahydrobiopterin regulation of eNOS redox function. Curr Pharm Des. 2014;20(22):3554–62.

    Article  CAS  PubMed  Google Scholar 

  50. McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem. 2000;275(9):6123–8.

    Article  CAS  PubMed  Google Scholar 

  51. Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab. 2009;20(6):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu X, Qi Y-F, Chang J-R, Lu W-W, Zhang J-S, Wang S-P, et al. Possible role of fibroblast growth factor 21 on atherosclerosis via amelioration of endoplasmic reticulum stress-mediated apoptosis in apoE−/− mice. Heart Vessel. 2015;30(5):657–68.

    Article  Google Scholar 

  53. Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin. 2014;46(8):629–40.

    Article  CAS  PubMed  Google Scholar 

  54. Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, et al. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2010;30(10):1925–32.

    Article  CAS  PubMed  Google Scholar 

  55. Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 2009;9(5):474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kutuk O, Basaga H. Bcl-2 protein family: implications in vascular apoptosis and atherosclerosis. Apoptosis. 2006;11(10):1661–75.

    Article  CAS  PubMed  Google Scholar 

  57. Liang P, Zhong L, Gong L, Wang J, Zhu Y, Liu W, et al. Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal-regulated kinase 1/2 signaling pathway. Int J Mol Med. 2017;40(5):1477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li E, Wang T, Wang F, Wang T, Sun L-Q, Li L, et al. FGF21 protects against ox-LDL induced apoptosis through suppressing CHOP expression in THP1 macrophage derived foam cells. BMC Cardiovasc Disord. 2015;15(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weiss D, Kools JJ, Taylor WR. Angiotensin II–induced hypertension accelerates the development of atherosclerosis in ApoE-deficient mice. 2001.

  60. Weiss D, Taylor WR. Deoxycorticosterone acetate salt hypertension in apolipoprotein E−/− mice results in accelerated atherosclerosis: the role of angiotensin II. Hypertension. 2008;51(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  61. Knowles JW, Maeda N. Genetic modifiers of atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2000;20(11):2336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Casalnuovo G, Gerdts E, Simone GD, Izzo R, Marco MD, Giudice R, et al. Arterial stiffness is associated with carotid atherosclerosis in hypertensive patients (the Campania Salute Network). Oxford University Press; 2012.

  63. Yamazaki D, Hitomi H, Nishiyama A. Hypertension with diabetes mellitus complications. Hypertens Res. 2018;1.

  64. Semba RD, Crasto C, Strait J, Sun K, Schaumberg DA, Ferrucci L. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. J Hum Hypertens. 2013;27(6):397–9.

    Article  CAS  PubMed  Google Scholar 

  65. He J-L, Zhao M, Xia J-J, Guan J, Liu Y, Wang L-Q, et al. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats. Sci Rep. 2016;6:29582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, et al. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) Axis in mice. Cell Metab. 2018;27:1323–1337.e5.

    Article  CAS  PubMed  Google Scholar 

  67. Montezano AC, Cat AND, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16(6):431.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Tikellis C, Thomas MC, Golledge J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis. 2013;226(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mazzolai L, Duchosal MA, Korber M, Bouzourene K, Aubert JF, Hao H, et al. Endogenous angiotensin II induces atherosclerotic plaque vulnerability and elicits a Th1 response in ApoE−/− mice. Hypertension. 2004;44(3):277–82.

    Article  CAS  PubMed  Google Scholar 

  70. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J Clin Invest. 2000;105(11):1605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Candido R, Jandeleit-Dahm KA, Cao Z, Nesteroff SP, Burns WC, Twigg SM, et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E–deficient mice. Circulation. 2002;106(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  72. Daugherty A, Poduri A, Chen X, Lu H, Cassis LA. Genetic variants of the renin angiotensin system: effects on atherosclerosis in experimental models and humans. Curr Atheroscler Rep. 2010;12(3):167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mazzolai L, Hayoz D. The renin-angiotensin system and atherosclerosis. Curr Hypertens Rep. 2006;8(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  74. Fraga-Silva RA, Ferreira AJ, dos Santos RAS. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep. 2013;15(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  75. Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ Res. 2016;118(8):1313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y-H, Y-h Z, Dong X-F, Hao Q-Q, Zhou X-M, Yu Q-T, et al. ACE2 and Ang-(1–7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res. 2015;64(3–4):253–60.

    Article  CAS  PubMed  Google Scholar 

  77. da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, et al. Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol. 2010;1000314.

  78. Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Prevention of angiotensin II–mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57(2):314–22.

    Article  CAS  PubMed  Google Scholar 

  79. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI. Angiotensin-(1–7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol. 2008;28(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  80. Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007;28(12):2382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng WH, Lu PJ, Hsiao M, Hsiao CH, Ho WY, Cheng PW, et al. Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT1 and mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. Br J Pharmacol. 2012;166(7):2024–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsekouras N, Katsargyris A, Skrapari I, Bastounis E, Georgopoulos S, Klonaris C, et al. The role of carotid plaque echogenicity in baroreflex sensitivity. J Vasc Surg. 2011;54(1):93–9.

    Article  PubMed  Google Scholar 

  83. Bristow J, Gribbin B, Honour A, Pickering T, Sleight P. Diminished baroreflex sensitivity in high blood pressure and ageing man. J Physiol. 1969;202(1):45P–6P.

    Article  CAS  PubMed  Google Scholar 

  84. Lakka TA, Salonen R, Kaplan GA, Salonen JT. Blood pressure and the progression of carotid atherosclerosis in middle-aged men. Hypertension. 1999;34(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  85. Cuspidi C, Sala C, Tadic M, Rescaldani M, De Giorgi GA, Grassi G, et al. Untreated masked hypertension and carotid atherosclerosis: a meta-analysis. Blood Press. 2015;24(2):65–71.

    Article  PubMed  Google Scholar 

  86. Lonn E, Yusuf S, Dzavik V, Doris C, Yi Q, Smith S, et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation. 2001;103(7):919–25.

    Article  CAS  PubMed  Google Scholar 

  87. Marfella R, Siniscalchi M, Nappo F, Gualdiero P, Esposito K, Sasso FC, et al. Regression of carotid atherosclerosis by control of morning blood pressure peak in newly diagnosed hypertensive patients. Am J Hypertens. 2005;18(3):308–18.

    Article  PubMed  Google Scholar 

  88. Chow WS, Xu A, Woo YC, Tso AW, Cheung SC, Fong CH, et al. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33(10):2454–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. Jama. 2016;316(12):1289–97.

    Article  CAS  PubMed  Google Scholar 

  91. Gofman JW, Lindgren F, Elliott H, Mantz W, Hewitt J, Strisower B, et al. The role of lipids and lipoproteins in atherosclerosis. Science. 1950;111(2877):166–86.

    Article  CAS  PubMed  Google Scholar 

  92. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  93. Do HT, Tselykh TV, Mäkelä J, Ho TH, Olkkonen VM, Bornhauser BC, et al. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/idol and the Canopy2 (Cnpy2)/Mylip-interacting saposin-like protein (Msap). J Biol Chem. 2012;287(16):12602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin X-L, He X-L, Zeng J-F, Zhang H, Zhao Y, Tan J-K, et al. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2–PPARγ–LXRα pathway in THP1 macrophage-derived foam cells. DNA Cell Biol. 2014;33(8):514–21.

    Article  CAS  PubMed  Google Scholar 

  95. Shang W, Yu X, Wang H, Chen T, Fang Y, Yang X, et al. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells. Mol Med Rep. 2015;11(1):503–8.

    Article  CAS  PubMed  Google Scholar 

  96. Dong B, Wu M, Cao A, Li H, Liu J. Suppression of idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression. Int J Mol Med. 2011;27(1):103–10.

    CAS  PubMed  Google Scholar 

  97. Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  98. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008;7(5):365–75.

    Article  CAS  PubMed  Google Scholar 

  99. Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004;89(6):2563–8.

    Article  CAS  PubMed  Google Scholar 

  100. Villarreal-Molina M, Antuna-Puente B. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie. 2012;94(10):2143–9.

    Article  CAS  PubMed  Google Scholar 

  101. Liang B, Wang X, Guo X, Yang Z, Bai R, Liu M, et al. Adiponectin upregulates ABCA1 expression through liver X receptor alpha signaling pathway in RAW 264.7 macrophages. Int J Clin Exp Pathol. 2015;8(1):450.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 2004;323(2):630–5.

    Article  CAS  PubMed  Google Scholar 

  103. Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17(5):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.

    Article  CAS  PubMed  Google Scholar 

  105. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.

    Article  CAS  PubMed  Google Scholar 

  106. Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17(5):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.

    Article  CAS  PubMed  Google Scholar 

  108. Li G, Yin J, Fu J, Li L, Grant SFA, Li C, et al. FGF21 deficiency is associated with childhood obesity, insulin resistance and hypoadiponectinaemia: the BCAMS study. Diabetes Metab. 2017;43(3):253–60.

    Article  CAS  PubMed  Google Scholar 

  109. Hui E, Xu A, Chow WS, Lee PC, Fong CH, Cheung SC, et al. Hypoadiponectinemia as an independent predictor for the progression of carotid atherosclerosis: a 5-year prospective study. Metab Syndr Relat Disord. 2014;12(10):517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dieplinger B, Poelz W, Haltmayer M, Mueller T. Hypoadiponectinemia is associated with symptomatic atherosclerotic peripheral arterial disease. Clin Chem Lab Med. 2006;44(7):830–3.

    Article  CAS  PubMed  Google Scholar 

  111. Barseghian A, Gawande D, Bajaj M. Adiponectin and vulnerable atherosclerotic plaques. J Am Coll Cardiol. 2011;57(7):761–70.

    Article  CAS  PubMed  Google Scholar 

  112. Singhal G, Fisher FM, Chee MJ, Tan TG, El Ouaamari A, Adams AC, et al. Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS One. 2016;11(2):e0148252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang C, Shao M, Yang H, Chen L, Yu L, Cong W, et al. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One. 2013;8(12):e82275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang WF, Li SM, Ren GP, Zheng W, Lu YJ, Yu YH, et al. Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats. Endocrine. 2015;49(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  115. Yu Y, Li S, Liu Y, Tian G, Yuan Q, Bai F, et al. Fibroblast growth factor 21 (FGF21) ameliorates collagen-induced arthritis through modulating oxidative stress and suppressing nuclear factor-kappa B pathway. Int Immunopharmacol. 2015;25(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  116. Li JY, Wang N, Khoso MH, Shen CB, Guo MZ, Pang XX, et al. FGF-21 elevated IL-10 production to correct LPS-induced inflammation. Inflammation. 2018;41(3):751–9.

    Article  CAS  PubMed  Google Scholar 

  117. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.

  118. Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, et al. Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. 2011;75(4):464–9.

  119. Lenart-Lipińska M, Matyjaszek-Matuszek B, Gernand W, Nowakowski A, Solski JJDr, practice c. Serum fibroblast growth factor 21 is predictive of combined cardiovascular morbidity and mortality in patients with type 2 diabetes at a relatively short-term follow-up. 2013;101(2):194–200.

  120. Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya FJE. TNF-α represses β-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. 2012;153(9):4238–45.

  121. Shen Y, Ma X, Zhou J, Pan X, Hao Y, Zhou M, et al. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. 2013;12(1):124.

  122. Ong K-L, Januszewski AS, O’Connell R, Jenkins AJ, Xu A, Sullivan DR, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study. 2015;58(3):464–73.

  123. Tomiyama H, Koji Y, Yambe M, Shiina K, Motobe K, Yamada J, et al. Brachial-ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome 2005;69(7):815–22.

  124. Paraskevas KI, Kotsikoris I, Koupidis SA, Giannoukas AD, Mikhailidis DP. Ankle—brachial index: a marker of both peripheral arterial disease and systemic atherosclerosis as well as a predictor of vascular events. Los Angeles: Sage Publications Sage CA; 2010.

    Google Scholar 

  125. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. 2013;18(3):333–40.

  126. Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier EJD. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. 2010;59(11):2781–9.

  127. Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. 2012;16(3):387–93.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Yousefi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Farzane Shanebandpour Tabari and Ansar Karimian equally first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabari, F.S., Karimian, A., Parsian, H. et al. The roles of FGF21 in atherosclerosis pathogenesis. Rev Endocr Metab Disord 20, 103–114 (2019). https://doi.org/10.1007/s11154-019-09488-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09488-x

Keywords

Navigation