Skip to main content
Log in

Insulin and glucagon signaling in the central nervous system

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The prevalence of the obesity and diabetes epidemic has triggered tremendous research investigating the role of the central nervous system (CNS) in the regulation of food intake, body weight gain and glucose homeostasis. This invited review focuses on the role of two pancreatic hormones—insulin and glucagon—that trigger signaling pathways in the brain to regulate energy and glucose homeostasis. Unlike in the periphery, insulin and glucagon signaling in the CNS does not seem to have opposing metabolic effects, as both hormones exert a suppressive effect on food intake and weight gain. They signal through different pathways and alter different neuronal populations suggesting a complementary action of the two hormones in regulating feeding behavior. Similar to its systemic effect, insulin signaling in the brain lowers glucose production. However, the ability of glucagon signaling in the brain to regulate glucose production remains unknown. Future studies that aim to dissect insulin and glucagon signaling in the CNS that regulate energy and glucose homeostasis could unveil novel signaling molecules to lower body weight and glucose levels in obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ginter E, Simko V. Global prevalence and future of diabetes mellitus. Adv Exp Med Biol. 2012;771:35–41.

    PubMed  Google Scholar 

  2. Berthoud HR, Lenard NR, Shin AC. Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1266–77.

    PubMed  CAS  Google Scholar 

  3. Campfield LA, Smith FJ. The pathogenesis of obesity. Baillieres Best Pract Res Clin Endocrinol Metab. 1999;13(1):13–30.

    PubMed  CAS  Google Scholar 

  4. Golay A, Ybarra J. Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2005;19(4):649–63.

    PubMed  CAS  Google Scholar 

  5. Das A, Mukhopadhyay S. The evil axis of obesity, inflammation and type-2 diabetes. Endocr Metab Immune Disord Drug Targets. 2011;11(1):23–31.

    PubMed  CAS  Google Scholar 

  6. Ahima RS, Qi Y, Singhal NS. Adipokines that link obesity and diabetes to the hypothalamus. Prog Brain Res. 2006;153:155–74.

    PubMed  CAS  Google Scholar 

  7. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.

    PubMed  CAS  Google Scholar 

  8. Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GW, Lam TK. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18(6):950–5.

    PubMed  CAS  Google Scholar 

  9. Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell Metab. 2012;15(5):646–55.

    PubMed  CAS  Google Scholar 

  10. Lam TK. Neuronal regulation of homeostasis by nutrient sensing. Nat Med. 2010;16(4):392–5.

    PubMed  CAS  Google Scholar 

  11. Hochberg I, Hochberg Z. Expanding the definition of hypothalamic obesity. Obes Rev. 2010;11(10):709–21.

    PubMed  CAS  Google Scholar 

  12. Banks WA, Jaspan JB, Kastin AJ. Selective, physiological transport of insulin across the blood–brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides. 1997;18(8):1257–62.

    PubMed  CAS  Google Scholar 

  13. Inokuchi A, Oomura Y, Shimizu N, Yamamoto T. Central action of glucagon in rat hypothalamus. Am J Physiol. 1986;250(1 Pt 2):R120–6.

    PubMed  CAS  Google Scholar 

  14. Banks WA, Kastin AJ. Peptides and the blood–brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull. 1985;15(3):287–92.

    PubMed  CAS  Google Scholar 

  15. Porte Jr D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes. 2005;54(5):1264–76.

    PubMed  CAS  Google Scholar 

  16. Unger JW, Moss AM, Livingston JN. Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat. Neuroscience. 1991;42(3):853–61.

    PubMed  CAS  Google Scholar 

  17. Baura GD, Foster DM, Porte Jr D, Kahn SE, Bergman RN, Cobelli C, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–30.

    PubMed  CAS  Google Scholar 

  18. Woods SC, Lotter EC, McKay LD, Porte Jr D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282(5738):503–5.

    PubMed  CAS  Google Scholar 

  19. McGowan MK, Andrews KM, Kelly J, Grossman SP. Effects of chronic intrahypothalamic infusion of insulin on food intake and diurnal meal patterning in the rat. Behav Neurosci. 1990;104(2):373–85.

    PubMed  CAS  Google Scholar 

  20. Park S, Hong SM, Ahn IS. Long-term intracerebroventricular infusion of insulin, but not glucose, modulates body weight and hepatic insulin sensitivity by modifying the hypothalamic insulin signaling pathway in type 2 diabetic rats. Neuroendocrinology. 2009;89(4):387–99.

    PubMed  CAS  Google Scholar 

  21. Clegg DJ, Riedy CA, Smith KA, Benoit SC, Woods SC. Differential sensitivity to central leptin and insulin in male and female rats. Diabetes. 2003;52(3):682–7.

    PubMed  CAS  Google Scholar 

  22. Foster LA, Ames NK, Emery RS. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav. 1991;50(4):745–9.

    PubMed  CAS  Google Scholar 

  23. Brown LM, Clegg DJ, Benoit SC, Woods SC. Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice. Physiol Behav. 2006;89(5):687–91.

    PubMed  CAS  Google Scholar 

  24. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.

    PubMed  CAS  Google Scholar 

  25. Shiraishi J, Yanagita K, Fukumori R, Sugino T, Fujita M, Kawakami S, et al. Comparisons of insulin related parameters in commercial-type chicks: evidence for insulin resistance in broiler chicks. Physiol Behav. 2011;103(2):233–9.

    PubMed  CAS  Google Scholar 

  26. Hallschmid M, Benedict C, Schultes B, Fehm HL, Born J, Kern W. Intranasal insulin reduces body fat in men but not in women. Diabetes. 2004;53(11):3024–9.

    PubMed  CAS  Google Scholar 

  27. Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008;93(4):1339–44.

    PubMed  CAS  Google Scholar 

  28. Hallschmid M, Higgs S, Thienel M, Ott V, Lehnert H. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes. 2012;61(4):782–9.

    PubMed  CAS  Google Scholar 

  29. Filippi BM, Mighiu PI, Lam TK. Is insulin action in the brain clinically relevant? Diabetes. 2012;61(4):773–5.

    PubMed  CAS  Google Scholar 

  30. Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012;13(12):1079–86.

    PubMed  CAS  Google Scholar 

  31. Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A, et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology. 1992;130(6):3608–16.

    PubMed  CAS  Google Scholar 

  32. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, et al. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci. 2002;22(20):9048–52.

    PubMed  CAS  Google Scholar 

  33. Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest. 2005;115(4):951–8.

    PubMed  CAS  Google Scholar 

  34. Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999;274(24):17184–92.

    PubMed  CAS  Google Scholar 

  35. Gan L, Zheng W, Chabot JG, Unterman TG, Quirion R. Nuclear/cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem. 2005;93(5):1209–19.

    PubMed  CAS  Google Scholar 

  36. Kitamura T, Feng Y, Kitamura YI, Chua Jr SC, Xu AW, Barsh GS, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006;12(5):534–40.

    PubMed  CAS  Google Scholar 

  37. Iskandar K, Cao Y, Hayashi Y, Nakata M, Takano E, Yada T, et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab. 2010;298(4):E787–98.

    PubMed  CAS  Google Scholar 

  38. Cao Y, Nakata M, Okamoto S, Takano E, Yada T, Minokoshi Y, et al. PDK1-Foxo1 in agouti-related peptide neurons regulates energy homeostasis by modulating food intake and energy expenditure. PLoS One. 2011;6(4):e18324.

    PubMed  CAS  Google Scholar 

  39. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–5.

    PubMed  CAS  Google Scholar 

  40. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci. 2002;5(6):566–72.

    PubMed  CAS  Google Scholar 

  41. Carvalheira JB, Ribeiro EB, Araujo EP, Guimaraes RB, Telles MM, Torsoni M, et al. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia. 2003;46(12):1629–40.

    PubMed  CAS  Google Scholar 

  42. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.

    PubMed  Google Scholar 

  43. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296(5):E1003–12.

    PubMed  CAS  Google Scholar 

  44. Zhang X, Dong F, Ren J, Driscoll MJ, Culver B. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol. 2005;191(2):318–25.

    PubMed  CAS  Google Scholar 

  45. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449(7159):228–32.

    PubMed  CAS  Google Scholar 

  46. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17.

    PubMed  CAS  Google Scholar 

  47. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29(2):359–70.

    PubMed  CAS  Google Scholar 

  48. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10(4):249–59.

    PubMed  CAS  Google Scholar 

  49. Begg DP, Mul JD, Liu M, Reedy BM, D’Alessio DA, Seeley RJ, et al. Reversal of diet-induced obesity increases insulin transport into cerebrospinal fluid and restores sensitivity to the anorexic action of central insulin in male rats. Endocrinology. 2013;154(3):1047–54.

    PubMed  CAS  Google Scholar 

  50. Konner AC, Hess S, Tovar S, Mesaros A, Sanchez-Lasheras C, Evers N, et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011;13(6):720–8.

    PubMed  Google Scholar 

  51. Boghossian S, Lemmon K, Park M, York DA. High-fat diets induce a rapid loss of the insulin anorectic response in the amygdala. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1302–11.

    PubMed  CAS  Google Scholar 

  52. Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 2010;11(1):77–83.

    PubMed  CAS  Google Scholar 

  53. Hayes MR, Leichner TM, Zhao S, Lee GS, Chowansky A, Zimmer D, et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 2011;13(3):320–30.

    PubMed  CAS  Google Scholar 

  54. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012;16(5):579–87.

    PubMed  CAS  Google Scholar 

  55. Sheng G, Chang GQ, Lin JY, Yu ZX, Fang ZH, Rong J, et al. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med. 2006;12(5):526–33.

    PubMed  CAS  Google Scholar 

  56. Niu SN, Huang ZB, Wang H, Rao XR, Kong H, Xu J, et al. Brainstem Hap1-Ahi1 is involved in insulin-mediated feeding control. FEBS Lett. 2011;585(1):85–91.

    PubMed  CAS  Google Scholar 

  57. Baskin DG, Figlewicz DP, Woods SC, Porte Jr D, Dorsa DM. Insulin in the brain. Annu Rev Physiol. 1987;49:335–47.

    PubMed  CAS  Google Scholar 

  58. Anika SM, Houpt TR, Houpt KA. Insulin as a satiety hormone. Physiol Behav. 1980;25(1):21–3.

    PubMed  CAS  Google Scholar 

  59. Vanderweele DA, Haraczkiewicz E, Van Itallie TB. Elevated insulin and satiety in obese and normal-weight rats. Appetite. 1982;3(2):99–109.

    PubMed  CAS  Google Scholar 

  60. Lovett D, Booth DA. Four effects of exogenous insulin on food intake. Q J Exp Psychol. 1970;22(3):406–19.

    PubMed  CAS  Google Scholar 

  61. Woods SC, Stein LJ, McKay LD, Porte Jr D. Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol. 1984;247(2 Pt 2):R393–401.

    PubMed  CAS  Google Scholar 

  62. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(4):E671–8.

    PubMed  CAS  Google Scholar 

  63. Beale E, Andreone T, Koch S, Granner M, Granner D. Insulin and glucagon regulate cytosolic phosphoenolpyruvate carboxykinase (GTP) mRNA in rat liver. Diabetes. 1984;33(4):328–32.

    PubMed  CAS  Google Scholar 

  64. Lok S, Kuijper JL, Jelinek LJ, Kramer JM, Whitmore TE, Sprecher CA, et al. The human glucagon receptor encoding gene: structure, cDNA sequence and chromosomal localization. Gene. 1994;140(2):203–9.

    PubMed  CAS  Google Scholar 

  65. Dunphy JL, Taylor RG, Fuller PJ. Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Mol Cell Endocrinol. 1998;141(1–2):179–86.

    PubMed  CAS  Google Scholar 

  66. Hoosein NM, Gurd RS. Identification of glucagon receptors in rat brain. Proc Natl Acad Sci U S A. 1984;81(14):4368–72.

    PubMed  CAS  Google Scholar 

  67. Graner JL, Abraira C. Glucagon in the cerebrospinal fluid. N Engl J Med. 1985;312(15):994–5.

    PubMed  CAS  Google Scholar 

  68. Inokuchi A, Oomura Y, Nishimura H. Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiol Behav. 1984;33(3):397–400.

    PubMed  CAS  Google Scholar 

  69. Honda K, Kamisoyama H, Saito N, Kurose Y, Sugahara K, Hasegawa S. Central administration of glucagon suppresses food intake in chicks. Neurosci Lett. 2007;416(2):198–201.

    PubMed  CAS  Google Scholar 

  70. Kurose Y, Kamisoyama H, Honda K, Azuma Y, Sugahara K, Hasegawa S, et al. Effects of central administration of glucagon on feed intake and endocrine responses in sheep. Anim Sci J. 2009;80(6):686–90.

    PubMed  CAS  Google Scholar 

  71. Geary N, Kissileff HR, Pi-Sunyer FX, Hinton V. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol. 1992;262(6 Pt 2):R975–80.

    PubMed  CAS  Google Scholar 

  72. Honda K, Kamisoyama H, Uemura T, Yanagi T, Saito N, Kurose Y, et al. The mechanism underlying the central glucagon-induced hyperglycemia and anorexia in chicks. Comp Biochem Physiol A Mol Integr Physiol. 2012;163(3–4):260–4.

    PubMed  CAS  Google Scholar 

  73. Saito S, Tachibana T, Choi YH, Denbow DM, Furuse M. ICV CRF and isolation stress differentially enhance plasma corticosterone concentrations in layer- and meat-type neonatal chicks. Comp Biochem Physiol A Mol Integr Physiol. 2005;141(3):305–9.

    PubMed  Google Scholar 

  74. Weisinger RS, Blair-West JR, Burns P, Denton DA, McKinley MJ, Purcell B, et al. The inhibitory effect of hormones associated with stress on Na appetite of sheep. Proc Natl Acad Sci U S A. 2000;97(6):2922–7.

    PubMed  CAS  Google Scholar 

  75. Aou S, Oomura Y, Lenard L, Nishino H, Inokuchi A, Minami T, et al. Behavioral significance of monkey hypothalamic glucose-sensitive neurons. Brain Res. 1984;302(1):69–74.

    PubMed  CAS  Google Scholar 

  76. Oomura Y, Ooyama H, Sugimori M, Nakamura T, Yamada Y. Glucose inhibition of the glucose-sensitive neurone in the rat lateral hypothalamus. Nature. 1974;247(439):284–6.

    PubMed  CAS  Google Scholar 

  77. Oomura Y. Significance of glucose, insulin and free fatty acid on the hypothalamic feeding and satiety neurons. In: Novin DN, Wyrwicka W, Bray GA, editors. Hunger: basic mechanisms and clinical implications. New York: Raven; 1976. p. 145–57.

    Google Scholar 

  78. Parker JA, McCullough KA, Field BC, Minnion JS, Martin NM, Ghatei MA, et al. Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int J Obes (Lond). 2013. doi:10.1038/ijo.2012.227.

    Google Scholar 

  79. Komenami N, Su FH, Thibault L. Effect of central glucagon infusion on macronutrient selection in rats. Physiol Behav. 1996;59(2):383–8.

    PubMed  CAS  Google Scholar 

  80. Atrens DM, Menendez JA. Glucagon and the paraventricular hypothalamus: modulation of energy balance. Brain Res. 1993;630(1–2):245–51.

    PubMed  CAS  Google Scholar 

  81. Sindelar DK, Chu CA, Venson P, Donahue EP, Neal DW, Cherrington AD. Basal hepatic glucose production is regulated by the portal vein insulin concentration. Diabetes. 1998;47(4):523–9.

    PubMed  CAS  Google Scholar 

  82. Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996;98(3):741–9.

    PubMed  CAS  Google Scholar 

  83. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994;93(6):2438–46.

    PubMed  CAS  Google Scholar 

  84. Lewis GF, Vranic M, Harley P, Giacca A. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes. 1997;46(7):1111–9.

    PubMed  CAS  Google Scholar 

  85. Chowers I, Lavy S, Halpern L. Effect of insulin administered intracisternally on the glucose level of the blood and the cerebrospinal fluid in vagotomized dogs. Exp Neurol. 1966;14(3):383–9.

    PubMed  CAS  Google Scholar 

  86. Agarwala GC, Mittal RK, Bapat SK, Bhardwaj UR. Effect of centrally administered insulin on blood glucose levels in dogs. Indian J Physiol Pharmacol. 1977;21(1):11–8.

    PubMed  CAS  Google Scholar 

  87. Sindelar DK, Balcom JH, Chu CA, Neal DW, Cherrington AD. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes. 1996;45(11):1594–604.

    PubMed  CAS  Google Scholar 

  88. Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD, et al. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest. 2011;121(9):3713–23.

    PubMed  CAS  Google Scholar 

  89. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434(7036):1026–31.

    PubMed  CAS  Google Scholar 

  90. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–82.

    PubMed  CAS  Google Scholar 

  91. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49.

    PubMed  Google Scholar 

  92. Lin HV, Plum L, Ono H, Gutierrez-Juarez R, Shanabrough M, Borok E, et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes. 2010;59(2):337–46.

    PubMed  CAS  Google Scholar 

  93. Okamoto H, Nakae J, Kitamura T, Park BC, Dragatsis I, Accili D. Transgenic rescue of insulin receptor-deficient mice. J Clin Invest. 2004;114(2):214–23.

    PubMed  CAS  Google Scholar 

  94. Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, et al. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab. 2006;3(4):267–75.

    PubMed  CAS  Google Scholar 

  95. Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM, et al. Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest. 2008;118(8):2959–68.

    PubMed  CAS  Google Scholar 

  96. Gelling RW, Morton GJ, Morrison CD, Niswender KD, Myers Jr MG, Rhodes CJ, et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab. 2006;3(1):67–73.

    PubMed  CAS  Google Scholar 

  97. Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2011;108(7):2939–44.

    PubMed  CAS  Google Scholar 

  98. Kishore P, Boucai L, Zhang K, Li W, Koppaka S, Kehlenbrink S, et al. Activation of K(ATP) channels suppresses glucose production in humans. J Clin Invest. 2011;121(12):4916–20.

    PubMed  CAS  Google Scholar 

  99. Filippi BM, Yang CS, Tang C, Lam TK. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab. 2012;16(4):500–10.

    PubMed  CAS  Google Scholar 

  100. Muller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med. 1970;283(3):109–15.

    PubMed  CAS  Google Scholar 

  101. Unger RH. Role of glucagon in the pathogenesis of diabetes: the status of the controversy. Metabolism. 1978;27(11):1691–709.

    PubMed  CAS  Google Scholar 

  102. Aronoff SL, Bennett PH, Unger RH. Immunoreactive glucagon (IRG) responses to intravenous glucose in prediabetes and diabetes among Pima Indians and normal Caucasians. J Clin Endocrinol Metab. 1977;44(5):968–72.

    PubMed  CAS  Google Scholar 

  103. Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D. Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science. 1982;215(4536):1115–6.

    PubMed  CAS  Google Scholar 

  104. Djuric SW, Grihalde N, Lin CW. Glucagon receptor antagonists for the treatment of type II diabetes: current prospects. Curr Opin Investig Drugs. 2002;3(11):1617–23.

    PubMed  CAS  Google Scholar 

  105. Brand CL, Rolin B, Jorgensen PN, Svendsen I, Kristensen JS, Holst JJ. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia. 1994;37(10):985–93.

    PubMed  CAS  Google Scholar 

  106. Liang Y, Osborne MC, Monia BP, Bhanot S, Gaarde WA, Reed C, et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes. 2004;53(2):410–7.

    PubMed  CAS  Google Scholar 

  107. Sloop KW, Cao JX, Siesky AM, Zhang HY, Bodenmiller DM, Cox AL, et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest. 2004;113(11):1571–81.

    PubMed  CAS  Google Scholar 

  108. Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 2011;60(2):391–7.

    PubMed  CAS  Google Scholar 

  109. Eigler N, Sacca L, Sherwin RS. Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress-induced hyperglycemia. J Clin Invest. 1979;63(1):114–23.

    PubMed  CAS  Google Scholar 

  110. Bomboy Jr JD, Lewis SB, Lacy WW, Sinclair-Smith BC, Liljenquist JE. Transient stimulatory effect of sustained hyperglucagonemia on splanchnic glucose production in normal and diabetic man. Diabetes. 1977;26(3):177–84.

    PubMed  CAS  Google Scholar 

  111. Felig P, Wahren J, Hendler R. Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. J Clin Invest. 1976;58(3):761–5.

    PubMed  CAS  Google Scholar 

  112. Ferrannini E, DeFronzo RA, Sherwin RS. Transient hepatic response to glucagon in man: role of insulin and hyperglycemia. Am J Physiol. 1982;242(2):E73–81.

    PubMed  CAS  Google Scholar 

  113. Cherrington AD, Lacy WW, Chiasson JL. Effect of glucagon on glucose production during insulin deficiency in the dog. J Clin Invest. 1978;62(3):664–77.

    PubMed  CAS  Google Scholar 

  114. German J, Kim F, Schwartz GJ, Havel PJ, Rhodes CJ, Schwartz MW, et al. Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology. 2009;150(10):4502–11.

    PubMed  CAS  Google Scholar 

  115. Buettner C, Pocai A, Muse ED, Etgen AM, Myers Jr MG, Rossetti L. Critical role of STAT3 in leptin’s metabolic actions. Cell Metab. 2006;4(1):49–60.

    PubMed  CAS  Google Scholar 

  116. Sandoval DA, Bagnol D, Woods SC, D’Alessio DA, Seeley RJ. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes. 2008;57(8):2046–54.

    PubMed  CAS  Google Scholar 

  117. Muse ED, Lam TK, Scherer PE, Rossetti L. Hypothalamic resistin induces hepatic insulin resistance. J Clin Invest. 2007;117(6):1670–8.

    PubMed  CAS  Google Scholar 

  118. Agarwala GC, Bapat SK. Effect of centrally administered glucagon on blood glucose levels in dogs. Indian J Med Res. 1977;66(2):323–30.

    PubMed  CAS  Google Scholar 

  119. Marubashi S, Tominaga M, Katagiri T, Yamatani K, Yawata Y, Hara M, et al. Hyperglycaemic effect of glucagon administered intracerebroventricularly in the rat. Acta Endocrinol (Copenh). 1985;108(1):6–10.

    CAS  Google Scholar 

  120. Ruiter M, la Fleur SE, Van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes. 2003;52(7):1709–15.

    PubMed  CAS  Google Scholar 

  121. Amir S. Central glucagon-induced hyperglycemia is mediated by combined activation of the adrenal medulla and sympathetic nerve endings. Physiol Behav. 1986;37(4):563–6.

    PubMed  CAS  Google Scholar 

  122. Agarwala GC, Mishra R, Jaiswal G, Bapat V. Effect of centrally administered glucagon on liver glycogen & enzymes in anaesthetised dogs. Indian J Med Res. 1989;90:372–8.

    PubMed  CAS  Google Scholar 

  123. Menendez JA, Atrens DM. Insulin and the paraventricular hypothalamus: modulation of energy balance. Brain Res. 1991;555(2):193–201.

    PubMed  CAS  Google Scholar 

  124. Yue JT, Mighiu PI, Naples M, Adeli K, Lam TK. Glycine normalizes hepatic triglyceride-rich VLDL secretion by triggering the CNS in high-fat fed rats. Circ Res. 2012;110(10):1345–54.

    PubMed  CAS  Google Scholar 

  125. Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med. 2008;14(6):667–75.

    PubMed  CAS  Google Scholar 

  126. Koch L, Wunderlich FT, Seibler J, Konner AC, Hampel B, Irlenbusch S, et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 2008;118(6):2132–47.

    PubMed  CAS  Google Scholar 

  127. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, et al. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 2007;117(11):3475–88.

    PubMed  CAS  Google Scholar 

  128. Perez-Tilve D, Hofmann SM, Basford J, Nogueiras R, Pfluger PT, Patterson JT, et al. Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat Neurosci. 2010;13(7):877–82.

    PubMed  CAS  Google Scholar 

  129. Stafford JM, Yu F, Printz R, Hasty AH, Swift LL, Niswender KD. Central nervous system neuropeptide Y signaling modulates VLDL triglyceride secretion. Diabetes. 2008;57(6):1482–90.

    PubMed  CAS  Google Scholar 

  130. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006;116(7):1983–93.

    PubMed  CAS  Google Scholar 

  131. van den Hoek AM, Voshol PJ, Karnekamp BN, Buijs RM, Romijn JA, Havekes LM, et al. Intracerebroventricular neuropeptide Y infusion precludes inhibition of glucose and VLDL production by insulin. Diabetes. 2004;53(10):2529–34.

    PubMed  Google Scholar 

Download references

Acknowledgments

The work discussed in this review produced by the Lam laboratory was supported by a research grant from the Canadian Diabetes Association. M.A.A. is supported by a BBDC scholarship. J.T.Y.Y is supported by a BBDC and University Health Network post-doctoral fellowship. T.K.T.L. holds the John Kitson McIvor (1915–1942) Endowed Chair in Diabetes Research and the Canada Research Chair in Obesity at the Toronto General Research Institute and the University of Toronto.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony K. T. Lam.

Additional information

Beatrice M. Filippi and Mona A. Abraham contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippi, B.M., Abraham, M.A., Yue, J.T.Y. et al. Insulin and glucagon signaling in the central nervous system. Rev Endocr Metab Disord 14, 365–375 (2013). https://doi.org/10.1007/s11154-013-9258-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9258-4

Keywords