Skip to main content

Advertisement

Log in

Seaweeds as potential therapeutic interventions for the metabolic syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Seaweeds are a characteristic part of the traditional diet in countries such as Japan and Korea; these countries also have a lower prevalence of metabolic syndrome than countries such as the USA and Australia. This suggests that seaweeds may contain compounds that reduce the characteristic signs of obesity, diabetes, hypertension, fatty liver and inflammation in the metabolic syndrome. Potentially bioactive compounds from seaweeds include polysaccharides, peptides, pigments, minerals and omega-3 fatty acids. This review emphasises current research on these compounds in isolated cells, animal models and patients. Key problems for future research include chemical characterisation of the bioactive principles, defining pharmacological responses in all aspects of the metabolic syndrome, determining if a therapeutic dose has been administered, and defining oral bioavailability of the active ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  PubMed  CAS  Google Scholar 

  2. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004;33:351–75.

    Article  PubMed  Google Scholar 

  3. Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med. 2004;164:1066–76.

    Article  PubMed  Google Scholar 

  4. Esposito K, Ceriello A, Giugliano D. Diet and the metabolic syndrome. Metab Syndr Relat Disord. 2007;5:291–6.

    Article  PubMed  CAS  Google Scholar 

  5. Arai H, Yamamoto A, Matsuzawa Y, Saito Y, Yamada N, Oikawa S, et al. Prevalence of the metabolic syndrome in elderly and middle-aged Japanese. J Clin Geront Geriat. 2010;1:42–7.

    Article  Google Scholar 

  6. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care. 2011;34:216–9.

    Article  PubMed  Google Scholar 

  7. Schmidt MD, Cleland VJ, Shaw K, Dwyer T, Venn AJ. Cardiometabolic risk in younger and older adults across an index of ambulatory activity. Am J Prev Med. 2009;37:278–84.

    Article  PubMed  Google Scholar 

  8. Shimazu T, Kuriyama S, Hozawa A, Ohmori K, Sato Y, Nakaya N, et al. Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Internat J Epidemiol. 2007;36:600–9.

    Article  Google Scholar 

  9. Tada N, Maruyama C, Koba S, Tanaka H, Birou S, Teramoto T, et al. Japanese dietary lifestyle and cardiovascular disease. J Atheroscler Thromb. 2011;18:723–34.

    Article  PubMed  Google Scholar 

  10. Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr. 2001;10:S40–7.

    PubMed  Google Scholar 

  11. Zava TT, Zava DT. Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res. 2011;4:14.

    Article  PubMed  CAS  Google Scholar 

  12. Fitzgerald C, Gallagher E, Tasdemir D, Hayes M. Heart health peptides from macroalgae and their potential use in functional foods. J Agric Food Chem. 2011;59:6829–36.

    Article  Google Scholar 

  13. MacArtain P, Gill CI, Brooks M, Campbell R, Rowland IR. Nutritional value of edible seaweeds. Nutr Rev. 2007;65:535–43.

    Article  PubMed  Google Scholar 

  14. Lee B. Seaweed: potential as a marine vegetable and other opportunities, by B Lee. Rural industries research and development corporation. Asian foods research and development, editors. Barton, A.C.T: Rural Industries Research and Development Corporation; 2008.

  15. Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs. 2011;9:1056–100.

    Article  PubMed  CAS  Google Scholar 

  16. Rajapakse N, Kim S-K. Nutritional and digestive health benefits of seaweed. Adv Food Nutr Res. 2011;64:17-28.

    Google Scholar 

  17. Smit A. Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol. 2004;16:245–62.

    Article  CAS  Google Scholar 

  18. Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol. 2013;60C:366–74.

    Article  Google Scholar 

  19. Holdt S, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol. 2011;23:543–97.

    Article  CAS  Google Scholar 

  20. Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9:196–223.

    Article  PubMed  CAS  Google Scholar 

  21. Kim MJ, Jeon J, Lee JS. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytother Res. 2013. doi:10.1002/ptr.4965.

    Google Scholar 

  22. Park MK, Jung U, Roh C. Fucoidan from marine brown algae inhibits lipid accumulation. Mar Drugs. 2011;9:1359–67.

    Article  PubMed  CAS  Google Scholar 

  23. Kim KJ, Lee BY. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutr Res. 2012;32:439–47.

    Article  PubMed  CAS  Google Scholar 

  24. Kim KJ, Yoon KY, Lee BY. Fucoidan regulate blood glucose homeostasis in C57BL/KSJ m+/+db and C57BL/KSJ db/db mice. Fitoterapia. 2012;83:1105–9.

    Article  PubMed  CAS  Google Scholar 

  25. Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym. 2013;95:143–7.

    Google Scholar 

  26. Yang W, Yu X, Zhang Q, Lu Q, Wang J, Cui W, et al. Attenuation of streptozotocin-induced diabetic retinopathy with low molecular weight fucoidan via inhibition of vascular endothelial growth factor. Exp Eye Res. 2013;115C:96–105.

    Article  PubMed  Google Scholar 

  27. Jeong YT, Kim YD, Jung YM, Park DC, Lee DS, Ku SK, et al. Low molecular weight fucoidan improves endoplasmic reticulum stress-reduced insulin sensitivity through AMP-activated protein kinase activation in L6 myotubes and restores lipid homeostasis in a mouse model of type 2 diabetes. Mol Pharmacol. 2013;84:147–57.

    Article  PubMed  CAS  Google Scholar 

  28. Kang S-M, Kim K-N, Lee S-H, Ahn G, Cha S-H, Kim A-D, et al. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr Polym. 2011;85:80–5.

    Article  CAS  Google Scholar 

  29. Li C, Gao Y, Xing Y, Zhu H, Shen J, Tian J. Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia–reperfusion injury in rats via regulating the inflammation response. Food Chem Toxicol. 2011;49:2090–5.

    Article  PubMed  CAS  Google Scholar 

  30. Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P. Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats. Food Chem. 2012;135:806–11.

    Google Scholar 

  31. Jensen GM, Pedersen C, Kristensen M, Frost G, Astrup A. Review: efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: evidence from animal and human studies. Obes Rev. 2013;14:129–44.

    Article  Google Scholar 

  32. Peters HP, Koppert RJ, Boers HM, Strom A, Melnikov SM, Haddeman E, et al. Dose-dependent suppression of hunger by a specific alginate in a low-viscosity drink formulation. Obesity (Silver Spring). 2011;19:1171–6.

    Article  PubMed  CAS  Google Scholar 

  33. Jensen MG, Kristensen M, Belza A, Knudsen JC, Astrup A. Acute effect of alginate-based preload on satiety feelings, energy intake, and gastric emptying rate in healthy subjects. Obesity. 2012;20:1851–8.

    Article  Google Scholar 

  34. Jensen GM, Kristensen M, Astrup A. Effect of alginate supplementation on weight loss in obese subjects completing a 12-wk energy-restricted diet: a randomized controlled trial. Am J Clin Nutr. 2012;96:5–13.

    Article  CAS  Google Scholar 

  35. Sarithakumari CH, Renju GL, Kurup GM. Anti-inflammatory and antioxidant potential of alginic acid isolated from the marine algae, Sargassum wightii on adjuvant-induced arthritic rats. Inflammopharmacology. 2013;21:261–8.

    Article  PubMed  CAS  Google Scholar 

  36. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  PubMed  CAS  Google Scholar 

  37. Moriya C, Shida Y, Yamane Y, Miyamoto Y, Kimura M, Huse N, et al. Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens. 2013. doi:10.3109/10641963.2013.776568.

    PubMed  Google Scholar 

  38. Parnell JA, Reimer RA. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes. 2012;3:29–34.

    Article  PubMed  Google Scholar 

  39. Kitano Y, Murazumi K, Duan J, Kurose K, Kobayashi S, Sugawara T, et al. Effect of dietary porphyran from the red alga, Porphyra yezoensis, on glucose metabolism in diabetic KK-Ay mice. J Nutr Sci Vitaminol (Tokyo). 2012;58:14–9.

    Article  PubMed  CAS  Google Scholar 

  40. Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol. 2011;22:315–26.

    Article  CAS  Google Scholar 

  41. Lin HV, Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.

    Article  PubMed  CAS  Google Scholar 

  42. Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machů L. Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res. 2012;66:75–145.

    Article  PubMed  Google Scholar 

  43. Raposo MF, de Morais RM, Bernardo de Morais AM. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs. 2013;11:233–52.

    Article  PubMed  Google Scholar 

  44. Juárez-Oropeza MA, Mascher D, Torres-Durán PV, Farias JM, Paredes-Carbajal MC. Effects of dietary Spirulina on vascular reactivity. J Med Food. 2009;12:15–20.

    Google Scholar 

  45. Lee EH, Park JE, Choi YJ, Huh KB, Kim WY. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr Res Pract. 2008;2:295–300.

    Article  PubMed  Google Scholar 

  46. Patarra R, Paiva L, Neto A, Lima E, Baptista J. Nutritional value of selected macroalgae. J Appl Phycol. 2011;23:205–8.

    Article  CAS  Google Scholar 

  47. Day L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci Technol. 2013;32:25–42.

    Article  CAS  Google Scholar 

  48. Christaki E, Florou-Paneri P, Bonos E. Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr. 2011;62:794–9.

    Article  PubMed  CAS  Google Scholar 

  49. Gressler V, Fujii MT, Martins AP, Colepicolo P, Mancini-Filho J, Pinto E. Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric. 2011;91:1687–92.

    Article  PubMed  CAS  Google Scholar 

  50. Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P. Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. Adv Food Nutr Res. 2011;64:325–37.

    Google Scholar 

  51. Fitzgerald C, Mora-Soler L, Gallagher E, O’Connor P, Prieto J, Soler-Vila A, et al. Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J Agric Food Chem. 2012;60:7421–7.

    Article  CAS  Google Scholar 

  52. Yoo JJ, Choi SP, Kim JY, Chang WS, Sim SJ. Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae. Bioprocess Biosyst Eng. 2013;36:729–36.

    Article  PubMed  CAS  Google Scholar 

  53. Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr. 2011;141:903–13.

    Article  PubMed  CAS  Google Scholar 

  54. Beydoun MA, Canas JA, Beydoun HA, Chen X, Shroff MR, Zonderman AB. Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys. J Nutr. 2012;142:1693–704.

    Article  PubMed  CAS  Google Scholar 

  55. Xu XR, Zou ZY, Huang YM, Xiao X, Ma L, Lin XM. Serum carotenoids in relation to risk factors for development of atherosclerosis. Clin Biochem. 2012;45:1357–61.

    Article  PubMed  CAS  Google Scholar 

  56. Lorenzoni F, Giampietri M, Ferri G, Lunardi S, Madrigali V, Battini L, et al. Lutein administration to pregnant women with gestational diabetes mellitus is associated to a decrease of oxidative stress in newborns. Gynecol Endocrinol. 2013. doi:10.3109/09513590.2013.808329.

    PubMed  Google Scholar 

  57. Donaldson MS. A carotenoid health index based on plasma carotenoids and health outcomes. Nutrients. 2011;3:1003–22.

    Article  PubMed  CAS  Google Scholar 

  58. Yuan JP, Peng J, Yin K, Wang JH. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55:150–65.

    Article  PubMed  CAS  Google Scholar 

  59. Arunkumar E, Bhuvaneswari S, Anuradha CV. An intervention study in obese mice with astaxanthin, a marine carotenoid—effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012;3:120–6.

    Article  PubMed  CAS  Google Scholar 

  60. Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S, et al. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor gamma modulator in adipocytes and macrophages. Biochem Pharmacol. 2012;84:692–700.

    Article  PubMed  CAS  Google Scholar 

  61. Ishiki M, Nishida Y, Ishibashi H, Wada T, Fujisaka S, Takikawa A, et al. Impact of divergent effects of astaxanthin on insulin signaling in L6 cells. Endocrinology. 2013;154:2600–12.

    Article  PubMed  CAS  Google Scholar 

  62. Chan K-C, Pen P-J, Yin M-C. Anticoagulatory and antiinflammatory effects of astaxanthin in diabetic rats. J Food Sci. 2012;77:H76–80.

    Article  PubMed  CAS  Google Scholar 

  63. Riccioni G, D’Orazio N, Franceschelli S, Speranza L. Marine carotenoids and cardiovascular risk markers. Mar Drugs. 2011;9:1166–75.

    Article  PubMed  CAS  Google Scholar 

  64. Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91:1166–74.

    Article  PubMed  CAS  Google Scholar 

  65. D’Orazio N, Gemello E, Gammone MA, de Girolamo M, Ficoneri C, Riccioni G. Fucoxantin: a treasure from the sea. Mar Drugs. 2012;10:604–16.

    Article  PubMed  Google Scholar 

  66. Beppu F, Hosokawa M, Yim M-J, Shinoda T, Miyashita K. Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A y mice. Lipids. 2013;48:449–55.

    Article  PubMed  CAS  Google Scholar 

  67. Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q, et al. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys. 2012;519:59–65.

    Article  PubMed  CAS  Google Scholar 

  68. Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9:1806–28.

    Article  PubMed  CAS  Google Scholar 

  69. Gomez-Gutierrez CM, Guerra-Rivas G, Soria-Mercado IE, Ayala-Sánchez NE. Marine edible algae as disease preventers. Adv Food Nutr Res. 2011;64:29–39.

    Article  PubMed  CAS  Google Scholar 

  70. Miao X, Sun W, Miao L, Fu Y, Wang Y, Su G, et al. Zinc and diabetic retinopathy. J Diabetes Res. 2013;2013:425854.

    PubMed  Google Scholar 

  71. Chimienti F. Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev. 2013;26:1–11.

    Article  PubMed  CAS  Google Scholar 

  72. Miao X, Wang Y, Sun J, Sun W, Tan Y, Cai L, et al. Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol. 2013;12:54.

    Article  PubMed  CAS  Google Scholar 

  73. Nagai N, Ito Y. Effect of magnesium ion supplementation on obesity and diabetes mellitus in Otsuka Long-Evans Tokushima Fatty (OLETF) rats under excessive food intake. J Oleo Sci. 2013;62:403–8.

    Article  PubMed  CAS  Google Scholar 

  74. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr: An Int Rev J. 2013;4:378S–83.

    Article  CAS  Google Scholar 

  75. Kundu D, Osta M, Mandal T, Bandyopadhyay U, Ray D, Gautam D. Serum magnesium levels in patients with diabetic retinopathy. J Nat Sci Biol Med. 2013;4:113–6.

    Article  PubMed  CAS  Google Scholar 

  76. Hata A, Doi Y, Ninomiya T, Mukai N, Hirakawa Y, Hata J, et al. Magnesium intake decreases Type 2 diabetes risk through the improvement of insulin resistance and inflammation: the Hisayama Study. Diabet Med. 2013; doi:10.1111/dme.12250.

  77. Koliaki C, Katsilambros N. Dietary sodium, potassium, and alcohol: key players in the pathophysiology, prevention, and treatment of human hypertension. Nutr Rev. 2013;71:402–11.

    Article  PubMed  Google Scholar 

  78. Pereira DD, Lima RP, de Lima RT, Goncalves MD, de Morais LC, Franceschini SD, et al. Association between obesity and calcium:phosphorus ratio in the habitual diets of adults in a city of Northeastern Brazil: an epidemiological study. Nutr J. 2013;12:90.

    Article  PubMed  Google Scholar 

  79. Samadi M, Sadrzadeh-Yeganeh H, Azadbakht L, Feizi A, Jafarian K, Sotoudeh G. Dietary calcium intake and risk of obesity in school girls aged 8–10 years. J Res Med Sci. 2012;17:1102–7.

    PubMed  Google Scholar 

  80. Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012;2012:539426.

    PubMed  CAS  Google Scholar 

  81. Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res. 2011;50:372–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Both authors declare no conflict of interest related to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S.A., Brown, L. Seaweeds as potential therapeutic interventions for the metabolic syndrome. Rev Endocr Metab Disord 14, 299–308 (2013). https://doi.org/10.1007/s11154-013-9254-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9254-8

Keywords

Navigation