Skip to main content
Log in

Sono-assisted degradation of rhodamine B using the Fe modified MgO nanostructures: characterization and catalytic activity

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work describes the removal of Rhodamine B (Rh B), a model of organic dye, from aqueous solution by Sono-assisted catalytic process on magnesium oxide- iron (MgO–Fe) nanostructures as catalyst. This material was prepared by high-energy ball milling method and characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) coupled with EDS analyzer, specific surface analysis determined from by BET analysis and FTIR spectroscopy. The XRD patterns show the formation of the MgFe2O4 phase, which presents a face-centred cubic lattice after 1 h of milling. The BET surface area and total pore volume of the spinel were found to be 60 m2/g and 61cm3. The SEM micrographs show that the particles size is between 50 and 100 μm. The best sonocatalytic degradation of Rh B was obtained with MgO–Fe at 12 h of grinding with an almost complete Rh B degradation in 240 min. irradiation time. The results clearly demonstrated the applicability of this MgO–Fe catalyst for the sono-catalytic oxidation of Rh B (10 mg /L). The Rh B mineralization was confirmed by Chemical Oxygen Demand (COD) and High-Performance Liquid Chromatography (HPLC) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations

Rh B:

Rhodamine B

BET:

Brunauer–Emmett–Teller

BJH:

Barrett-Joyner-Halenda

Co :

Initial concentration

C:

Concentration at time t

FE-SEM:

Field emission scanning electron microscopy

β:

Full width at half maximum

FWHW:

Full width at half maximum

θ:

Diffraction angle

XRD:

X-ray diffractometer

λ:

Wavelength

References

  1. Praveen Kumar P, Laxmi Deepak Bhatlu M, Sukanya K, Karthikeyan S, Jayan N (2021) Synthesis of magnesium oxide nanoparticle by eco friendly method (green synthesis) – a review. Mater Today 37:3028–3030

    CAS  Google Scholar 

  2. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process - Process Intensif 109:178–189. https://doi.org/10.1016/j.cep.2016.08.016

    Article  CAS  Google Scholar 

  3. Gupta SK, Mao Y (2021) A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog Mater Sci 117:100734

    Article  CAS  Google Scholar 

  4. Abdul Majeed AM, Hussein IF, Abd Al-Jalil RO (2020) Fabrication of high responsivity for MgO NPs/PSi heterojunction device by sol-gel technique. SILICON 12:1007–1010

    Article  CAS  Google Scholar 

  5. Askari P, Faraji A, Khayatian G, Mohebbi S (2017) Effective ultrasound-assisted removal of heavy metal ions As(III), Hg(II), and Pb(II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites. J IRAN CHEM SOC 14:613–621

    Article  CAS  Google Scholar 

  6. Haldorai Y, Shim J-J (2014) An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: a novel reusable adsorbent. Appl Surf Sci 292:447–453

    Article  CAS  Google Scholar 

  7. El-Nahhal IM, Kodeh FS, Salem JK, Hammad T, Kuhn S, Hempelmann R, Al Bhaisi S (2019) Silica, mesoporous silica and its thiol functionalized silica coated MgO and Mg(OH)2 materials. Chemistry Africa 2:267–276

    Article  CAS  Google Scholar 

  8. Khor CM, Khan MM, Khan A, Khan MY, Harunsani MH (2022) La-substituted AgNbO3 for photocatalytic degradation of Rhodamine B and methylene blue dyes. Reac Kinet Mech Cat 135:1687–1701

    Article  CAS  Google Scholar 

  9. Borgohain X, Boruah A, Sarma GK, Rashid MH (2020) Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. J Mol Liq 305:112799

    Article  CAS  Google Scholar 

  10. Dobrucka R (2018) Synthesis of MgO nanoparticles Using Artemisia Abrotanum Herba extract and their antioxidant and photocatalytic properties. IJST-T CIV ENG 42:547–555

    Google Scholar 

  11. Davydov SY, Kryukov AY, Gerya VO, Izvol’skii IM, Rakov EG (2012) Preparation of a platelike carbon nanomaterial using MgO as a template. Inorganic Mater 48:244–248

    Article  CAS  Google Scholar 

  12. Lops C, Ancona A, Di Cesare K, Dumontel B, Garino N, Canavese G, Hérnandez S, Cauda V (2019) Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl Catal B 243:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Dai J, Shi G, Li L, Wang G, Yang H (2016) Sonocatalytic degradation of Rhodamine B catalyzed by β-Bi2O3 particles under ultrasonic irradiation. Ultrason Sonochem 29:172–177

    Article  CAS  PubMed  Google Scholar 

  14. Ge W, Jiao S, Xu M, Shi J, Chang Z (2020) Trioctylphosphine (TOP)-free synthesis of TiSe2 plates for enhanced photocatalytic degradation performance of Rhodamine B dyes. Solid State Sci 103:106189

    Article  CAS  Google Scholar 

  15. Kumar V, Singh M, Behera K, Pandey S (2020) Ionic liquid induced removal of Rhodamine B from water. J Mol Liq 319:114195

    Article  CAS  Google Scholar 

  16. Pang YL, Bhatia S, Abdullah AZ (2011) Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution. Sep Purif Techno 77:331–338

    Article  CAS  Google Scholar 

  17. Wang Y, Shui A, Du B (2022) Simple synthesis of high photocatalytic activity TiO2 nanopowder with sodium dodecylbenzene sulfonate surfactant for photocatalysis of rhodamine B and methyl orange. Reac Kinet Mech Cat 135:1703–1717

    Article  CAS  Google Scholar 

  18. Zhu L, Ghosh T, Park C-Y, Meng Z-D, Oh W-C (2012) Enhanced sonocatalytic degradation of rhodamine B by graphene-TiO2 composites synthesized by an ultrasonic-assisted method. Chin J Catal 33:1276–1283

    Article  CAS  Google Scholar 

  19. Soltani RDC, Safari M (2016) Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization. Ultrasonics Sonochem 32:181–190

    Article  Google Scholar 

  20. Abdurahman MH, Abdullah AZ, Shoparwe NF (2021) A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: synergistic mechanism and degradation pathway. Chem Eng J 413:127412

    Article  CAS  Google Scholar 

  21. Soltani R, Safari M, Rezaee R, Maleki A, Giahi O, Ghanbari R (2017) Sonocatalytic degradation of Humic substances from aquatic environments Using MgO Nanoparticles. Avicenna J Environ Health Eng 4:13–18

    Article  Google Scholar 

  22. Hayati F, Isari AA, Anvaripour B, Fattahi M, Kakavandi B (2020) Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: effective factors, pathway and biodegradability studies. Chem Eng J 381:122636

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhou J, Cai W, Zhou J, Li Z (2018) Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction. Appl Surf Sci 430:549–560

    Article  CAS  Google Scholar 

  24. Awadallah AE, Abdel-Mottaleb MS, Aboul-Enein AA, Yonis MM, Aboul-Gheit AK (2015) Catalytic decomposition of natural gas to CO/CO2-free hydrogen production and carbon nanomaterials using MgO-supported monometallic iron family catalysts. Chem Eng Commun 202:163–174

    Article  CAS  Google Scholar 

  25. Aboul-Enein AA, Awadallah AE (2018) Production of nanostructured carbon materials using Fe–Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste. Chem Eng J 354:802–816

    Article  CAS  Google Scholar 

  26. Niu H, Yang Q, Tang K, Xie Y (2006) Large-scale synthesis of single-crystalline MgO with bone-like nanostructures. J Nanopart Res 8:881–888

    Article  CAS  Google Scholar 

  27. Sahoo SK, Dhal JP, Panigrahi GK (2020) Magnesium oxide nanoparticles decorated iron oxide nanorods: synthesis, characterization and remediation of Congo red dye from aqueous media. Compos Commun 22:100496

    Article  Google Scholar 

  28. Govindaraju K, Anand KV, Anbarasu S, Theerthagiri J, Revathy S, Krupakar P, Durai G, Kannan M, Subramanian KS (2020) Seaweed (Turbinaria ornata)-assisted green synthesis of magnesium hydroxide [Mg(OH)2] nanomaterials and their anti-mycobacterial activity. Mater Chem Phys 239:122007

    Article  CAS  Google Scholar 

  29. Coquay P, De Grave E, Peigney A, Vandenberghe RE, Laurent C (2002) Carbon nanotubes by a CVD method. part I: synthesis and characterization of the (Mg, Fe)O catalysts. J Phys Chem B 106:13186–13198

    Article  CAS  Google Scholar 

  30. Ahmed S, Rehman HU, Ali Z, Qadeer A, Haseeb A, Ajmal Z (2021) Solvent assisted synthesis of hierarchical magnesium oxide flowers for adsorption of phosphate and methyl orange: kinetic, isotherm, thermodynamic and removal mechanism. Surfaces Interfaces 23:100953

    Article  CAS  Google Scholar 

  31. Taghizadeh MT, Abdollahi R (2011) Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles. Ultrason Sonochem 18:149–157

    Article  CAS  PubMed  Google Scholar 

  32. Fatimah I, Nurillahi R, Sahroni I, Fadillah G, Nugroho BH, Kamari A, Muraza O (2020) Sonocatalytic degradation of rhodamine B using tin oxide/montmorillonite. J Water Process Eng 37:101418

    Article  Google Scholar 

  33. Lente G (2015) Solving rate equations BT - deterministic kinetics in chemistry and systems biology. In: Lente G (ed) The dynamics of complex reaction networks. Springer International Publishing, Cham, pp 21–59

    Google Scholar 

  34. Benomara A, Guenfoud F, Mokhtari M, Boudjemaa A (2021) Sonolytic, sonocatalytic and sonophotocatalytic degradation of a methyl violet 2B using iron-based catalyst. Reac Kinet Mech Cat 132:513–528

    Article  CAS  Google Scholar 

  35. Youcef R, Benhadji A, Zerrouki D, Fakhakh N, Djelal H, Taleb Ahmed M (2021) Electrochemical synthesis of CuO–ZnO for enhanced the degradation of Brilliant Blue (FCF) by sono-photocatalysis and sonocatalysis: kinetic and optimization study. Reac Kinet Mech Cat 133:541–561

    Article  CAS  Google Scholar 

  36. Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem A 109:4869–4872

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Wang W, Shang M, Yin W (2010) Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst. Catal Commun 11:982–986

    Article  CAS  Google Scholar 

  38. Acar MK, Altun T, Gubbuk IH (2022) Synthesis and characterization of silver doped magnetic clay nanocomposite for environmental applications through effective RhB degradation. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04256-y

    Article  Google Scholar 

  39. Zahir MH, Rahman MM, Irshad K, Rahman MM (2019) Shape-stabilized phase change materials for solar energy storage: MgO and Mg(OH)2 mixed with polyethylene glycol. Nanomaterials 9:1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeevanandam J, Chan YS, Danquah MK (2017) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem 41:2800–2814

    Article  CAS  Google Scholar 

  41. Sharma G, Jeevanandam P (2013) A facile synthesis of multifunctional Iron Oxide@Ag core-shell nanoparticles and their catalytic applications. Eur J Inorg Chem 2013:6126–6136

    Article  CAS  Google Scholar 

  42. Pavithra S, Mohana B, Mani M, Saranya PE, Jayavel R, Prabu D, Kumaresan S (2021) Bioengineered 2D ultrathin sharp-edged MgO nanosheets using achyranthes aspera leaf extract for antimicrobial applications. J Inorg Organomet Polym Mater 31:1120–1133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Sciences and technology of Houari Boumediene (Algeria)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mania Terki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terki, M., Triaa, S., Ali, F.K. et al. Sono-assisted degradation of rhodamine B using the Fe modified MgO nanostructures: characterization and catalytic activity. Reac Kinet Mech Cat 136, 1143–1155 (2023). https://doi.org/10.1007/s11144-023-02388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02388-x

Keywords

Navigation