Skip to main content
Log in

Unsupported CoNixMo sulfide hydrodesulfurization catalysts prepared by the thermal decomposition of trimetallic tetrabutylammonium thiomolybdate: effect of nickel on sulfur removal

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein we report the synthesis of unsupported bimetallic CoMo and trimetallic CoNiMo sulfide catalysts prepared by thermal decomposition (ex situ activation) of carbon-containing precursors and varying the nickel concentration for the hydrodesulfurization (HDS) of dibenzothiophene. The catalysts prepared were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma mass spectrometry and BET surface area measurements. The results from the characterization showed that the addition of an alkyl chained precursor results in non-porous catalysts with low surface area and high carbon content, which negatively affects the formation of crystalline phases such as molybdenum sulfide and their performance in the HDS reaction. Furthermore, the addition of nickel has a negative effect on the catalysts since it was observed that when it was added, the reaction rate values decreased and the catalyst with the highest catalytic activity turned out to be the CoMo catalyst. Although nickel catalysts generally have more affinity for hydrogenation reactions, unsupported trimetallic catalysts showed a preference for the direct desulfurization pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Uchenna BF, Akpoveta SA (2019) In: Gounder RM (ed) Processing of heavy crude oils: challenges and opportunities. IntechOpen, London

    Google Scholar 

  2. Park YC, Oh ES, Rhee HK (1997) Ind Eng Chem Res 36–12:5083–5089

    Article  Google Scholar 

  3. Meresht ES, Shahrabi T, Neshati T (2011) Eng Failure Anal 18(3):963–970

    Article  Google Scholar 

  4. Furimsky E (2003) Appl Catal A 240(1–2):1–28

    Article  CAS  Google Scholar 

  5. Bhaskar M, Valavarasu G, Sairam B, Balaraman KS, Balu K (2004) Ind Eng Chem Res 43:6654–6669

    Article  CAS  Google Scholar 

  6. Chandra Srivastava V (2012) RSC Adv 2:759–783

    Article  CAS  Google Scholar 

  7. Tanimu A, Alhooshani K (2019) Energy Fuels 33:2810–2838

    Article  CAS  Google Scholar 

  8. Weisser O, Landa S (1973) Sulphide catalysts, their properties and applications. Pergamon Press, New York

    Google Scholar 

  9. Ho TC (2004) Catal Today 98:3–18

    Article  CAS  Google Scholar 

  10. Infantes-Molina A, Romero-Pérez A, Eliche-Quesada D, Mérida-Robles J, Jiménez-Lopéz A, Rodríguez-Castellón E (2012) In: Karamé I (ed) Hydrogenation. IntechOpen, London

    Google Scholar 

  11. Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345–471

    CAS  Google Scholar 

  12. Ryymin EM, Honkela ML, Viljava TR, Krause AOI (2010) Appl Catal A 389:114–121

    Article  CAS  Google Scholar 

  13. Eijsbouts S, Mayo SW, Fujita K (2007) Appl Catal A 322:58–66

    Article  CAS  Google Scholar 

  14. Liu H, Liu C, Yin C, Cha Y, Li Y, Liu D, Liu B, Li X, Wang Y, Li X (2015) Appl Catal B 174–175:264–276

    Article  Google Scholar 

  15. Niefind F, Bensch W, Deng M, Kienle L, Reyes JC, Del Valle Granados JM (2015) Appl Catal A 497:72–84

    Article  CAS  Google Scholar 

  16. Zdrazil M (1988) Catal Today 3:269–365

    Article  CAS  Google Scholar 

  17. Jacobson AJ, Chianelli RR, Pecoraro TA (1987) U.S. Patent 4.

  18. Naumann AW, Behan AS (1981) U.S. Patent 4.

  19. Chianelli RR, Pecoraro TA (1985) U.S. Patent 4.

  20. Kaluža L, Gulková D (2016) Reac Kinet Mech Cat 118:313–324

    Article  Google Scholar 

  21. Pecoraro TA, Chianelli RR (1985) U.S. Patent 4.

  22. Lee DK, Lee IC, Woo SI (1994) Appl Catal A 109:195–210

    Article  CAS  Google Scholar 

  23. Nakamura H, Amemiya M, Ishida K (2005) J Jpn Pet Inst 48:281–289

    Article  CAS  Google Scholar 

  24. Yin C, Liu H, Li X, Wang Y, Liu B, Zhao L, Liu C (2014) Catal Lett 144:285–292

    Article  CAS  Google Scholar 

  25. Qian W, Hachiya Y, Wang D, Hirabayashi K, Ishihara A, Kabe T, Okazaki H, Adachi M (2002) Appl Catal A 227:19–28

    Article  CAS  Google Scholar 

  26. Berhault G, Metha A, Pavel AC, Yang J, Rendon L, Yácaman MJ, Cota Araiza L, Duarte Moller A, Chianelli RR (2001) J Catal 198:9–19

    Article  CAS  Google Scholar 

  27. Yanjiao Y, Xin J, Wang L, Qiumin Z, Guang X, Changhai L (2011) Catal Today 175:460–466

    Article  Google Scholar 

  28. Álvares L, Berhault G, Alonso-Nuñez G (2008) Catal Lett 125:35–45

    Article  Google Scholar 

  29. Iriarte V, Cruz Reyes J, Del Valle M, Alonso G, Fuentes S, Paraguay-Delgado F, Romero-Rivera R (2017) React Kinet Mech Cat 121:593–605

    Article  CAS  Google Scholar 

  30. Huirache-Acuña R, Albiter MA, Ornelas C, Paraguay-Delgado F, Martínez-Sánchez R, Alonso-Núñez G (2006) Appl Catal A 308:134–142

    Article  Google Scholar 

  31. Huirache-Acuña R, Alonso-Núñez G, Paraguay-Delgado F, Lara-Romero J, Berhault G, Rivera Muñoz EM (2015) Catal Today 250:28–37

    Article  Google Scholar 

  32. Nava H, Ornelas C, Aguilar A, Berhault G, Fuentes S, Alonso G (2003) Catal Lett 86:257–265

    Article  CAS  Google Scholar 

  33. Chianelli RR, Prestridge EB, Pecoraro TA, Deneufville JP (1979) Science 203:11105–11107

    Article  Google Scholar 

  34. Rodriguez J (1997) Polyhedron 16:3177–3184

    Article  CAS  Google Scholar 

  35. Suresh C, Pérez-Cabrera L, de León JND, Zepeda TA, Alonso-Núñez G, Moyado SF (2017) Catal Today 296:214–218

    Article  CAS  Google Scholar 

  36. Candia R, Clausen BS, Topsøe H (1982) J Catal 77:564–566

    Article  CAS  Google Scholar 

  37. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153:1–68

    Article  CAS  Google Scholar 

  38. Glasson C, Geantet C, Lacroix M, Labruyere F, Dufresne P (2002) J Catal 212:76–85

    Article  CAS  Google Scholar 

  39. Chianelli RR, Berhault G (1999) Catal Today 53:357–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the support granted by SENER-CONACyT 117373 project, CONACYT 182191 project and CIC-UMSNH 2020. At the same time, we also appreciate the technical assistance of F. Ruiz, M. Estrada, I. Gradilla, E. Aparicio, and B. Acosta.

Funding

SENER-CONACyT 117373 and CONACYT 182191 projects and CIC-UMSNH 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Huirache-Acuña.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervantes, J.A.M., Huirache-Acuña, R., de León, J.N.D. et al. Unsupported CoNixMo sulfide hydrodesulfurization catalysts prepared by the thermal decomposition of trimetallic tetrabutylammonium thiomolybdate: effect of nickel on sulfur removal. Reac Kinet Mech Cat 131, 187–198 (2020). https://doi.org/10.1007/s11144-020-01844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01844-2

Keywords

Navigation