Skip to main content
Log in

Catalytic aldol condensation of formaldehyde with acetic acid on titanium phosphates modified by different techniques

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

X-ray amorphous titanium phosphate (TiP) prepared via precipitation from titanylsulfate showed low catalytic performances in the process of aldol condensation of acetic acid with formaldehyde for production of acrylic acid (AA). As-precipitated TiP was modified in the form of wet gel and dried xerogel using hydrothermal (HTT), microwave (MWT) and mechanochemical (MChT) treatments. The physical–chemical characteristics of initial and modified TiP were studied using XRD, FTIR, adsorption–desorption of nitrogen, ammonia thermo-programmed desorption. All types of treatment lead to significant but irregular changes in crystal and porous structure as well as surface acidity of TiP catalysts. The crystalline titanium hydro- and pyrophosphates are formed under hydrothermal conditions (HTT and MWT). These phases exhibit increased activity and selectivity with respect to acrylic acid. The formation of meso-macroporous structure also contributes to this. The most efficient catalyst contains crystalline titanium hydro- and pyrophosphates and has high total acidity with maximum content of strong acid sites, multimodal meso-macroporous structure and the highest share of macropores: AA yield on this catalyst is 61% at 80% acrylic acid selectivity. It can be prepared via HTT of xerogel at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Method for production of acrolein and acrylic acid from propylene: patent 6545178 US//Michio Tanimoto, Daisuke Nakamura, Tatsuya Kawajiri; assignee: Nippon Shokubai Co., Ltd. (Osaka, JP). No 314719/09 filing date: 18.05.1999; publication date: 08.04.2003

  2. Elliott DC (2003) Encyclopedia of energy. Chemicals from biomass. Battelle Pacific Northwest Division. http://www.pnl.gov/biobased/docs/encyclopedia.pdf

  3. Yang D, Sararuk C, Suzuki K, Li Z, Li C (2016) Effect of calcination temperature on the catalytic activity of VPO for aldol condensation of acetic acid and formalin. Chem Eng J 300:160–168

    Article  CAS  Google Scholar 

  4. Guo X, Yang D, Zuo C, Peng Z, Li C, Zhang S (2017) Catalysts, process optimization, and kinetics for the production of methyl acrylate over vanadium phosphorus oxide catalysts. Ind Eng Chem Res 56:5860–5871

    Article  CAS  Google Scholar 

  5. Yang D, Li D, Yao H, Zhang G, Jiao T, Li Z, Li C, Zhang S (2015) Reaction of formalin with acetic acid over vanadium-phosphorus oxide bifunctional catalyst. Ind Eng Chem Res 54:6865–6873

    Article  CAS  Google Scholar 

  6. Zhao H, Zuo C, Yang D, Li C, Zhang S (2016) Effects of support for vanadium phosphorus oxide catalysts on vapor-phase aldol condensation of methyl acetate with formaldehyde. Ind Eng Chem Res 55:12693–12702

    Article  CAS  Google Scholar 

  7. Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25

    Article  Google Scholar 

  8. Arteaga-Pérez LE, Gómez-Cápiro O, Karelovic A, Jiménez R (2016) A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: standalone vs integrated topologies. Chem Eng J 286:663–678

    Article  Google Scholar 

  9. Nebesnyi R (2015) Complex oxide catalysts of acrylic acid obtaining by aldol condensation method. East Eur J Enterp Technol 6:13–16

    Google Scholar 

  10. Dmytruk Yu, Ivasiv V, Nebesnyi R, Maykova S (2015) Optimum conditions determination of methyl methacrylate obtaining over tungsten-containing catalyst. East Eur J Enterp Technol 6:4–7

    Google Scholar 

  11. Nebesna Yu, Ivasiv V, Nebesnyi R (2015) The study of technological and kinetic regularities of simultaneous methacrylates obtaining over zirconium-containing catalysts. East Eur J Enterp Technol 6:49–52

    Google Scholar 

  12. Lapychak N, Ivasiv V, Nebesnyi R, Pikh ZG, Shpyrka II (2016) Synthesis of acrylates from methylpropionate, propionic acid and formaldehyde in the gas phase on solid catalysts. East Eur J Enterp Technol 5(6):44–48

    Google Scholar 

  13. Nebesnyi R, Ivasiv V, Pikh Z, Zhyznevskyi V, Dmytruk Yu (2014) The kinetic of the gas phase aldol condensation reaction of propionic acid with formaldehyde on B2O3–P2O5–WO3/SiO2 catalyst. Chem Chem Technol 8:29–34

    CAS  Google Scholar 

  14. Yoo JS (1993) Silica supported metal-doped cesium ion catalyst for methacrylic acid synthesis via condensation of propionic acid with formaldehyde. Appl Catal A 102:215–232

    Article  CAS  Google Scholar 

  15. Ludmány A, Kurek SS, Stokłosa A, Wilczynski G, Wójtowicz A, Zaj J (2004) Amorphous titanium hydrogen phosphate—an inorganic sorbent and a catalyst. Appl Catal A 267:149–156

    Article  Google Scholar 

  16. Lin R, Ding Yu (2013) Review on the synthesis and applications of mesostructured transition metal phosphates. Materials 6:217–243

    Article  CAS  Google Scholar 

  17. Ai M (1989) Effect of the composition of vanadium-titanium binary phosphate on catalytic performance in vapor-phase aldol condensation. Appl Catal 54:29–36

    Article  CAS  Google Scholar 

  18. Ai M, Fujihashi H, Hosoi S, Yoshida A (2003) Production of methacrylic acid by vapor-phase aldol condensation of propionic acid with formaldehyde over silica-supported metal phosphate catalysts. Appl Catal A 252:185–191

    Article  CAS  Google Scholar 

  19. Skubiszewska-Zięba J, Khalameida S, Sydorchuk V (2016) Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids Surf A 504:139–153

    Article  Google Scholar 

  20. Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, Charmas B, Skwarek E, Janusz W (2017) Hydrothermal, microwave and mechanochemical modification of amorphous zirconium phosphate structure. J Therm Anal Calorim 128:795–806

    Article  CAS  Google Scholar 

  21. Przepiera A, Przepiera K, Plaska J (2008) Preparation of titanium (IV) phosphates. Pol J Appl Chem LII 1–2:91–100

    Google Scholar 

  22. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Progr Cryst Growth Charact Mater 53:117–166

    Article  CAS  Google Scholar 

  23. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219

    Article  CAS  Google Scholar 

  24. Turco M, Ciambelli P, Bagnasco G, Ginestra A, Galli P, Ferragina C (1989) TPD study of NH3 adsorbed by different phases of zirconium phosphate. J Catal 117:355–361

    Article  CAS  Google Scholar 

  25. Niwa M, Katada N (2013) New method for the temperature programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review. Chem Rec 13:432–455

    Article  CAS  Google Scholar 

  26. Patrono P, La Ginestra A, Ferragina C, Massucci MA, Frezza A, Vecchio S (1992) Hydrothermal treatment of Zr, Ti, Sn and Ge hydrogen phosphates: characterization of the derived compounds by thermal methods. J Therm Anal Calorim 38:2603–2612

    Article  CAS  Google Scholar 

  27. Xi M, Wu L, Li J, Li X (2015) Hierarchical flower-like titanium phosphate derived from H-titanate nanotubes for photocatalysis. J Mater Sci 50:7293–7302

    Article  CAS  Google Scholar 

  28. Soria J, Iglesias JE, Sanz J (1993) Effect of calcination on titanium phosphate produced by H3PO4 treatment of anatase. J Chem Soc Faraday Trans 89:2515–2518

    Article  CAS  Google Scholar 

  29. Marcu I-C, Sandulescu I, Millet J-MM (2003) Effects of the method of preparing titanium pyrophosphate catalyst on the structure and catalytic activity in oxidative dehydrogenation of n-butane. J Mol Catal A 203:241–250

    Article  CAS  Google Scholar 

  30. Leboda R, Charmas B, Sidorchuk VV (1997) Physicochemical and technological aspects of the hydrothermal modification of complex sorbents and catalysts. Part I. Modification of porous and crystalline structures. Adsorpt Sci Technol 15:189–204

    Article  CAS  Google Scholar 

  31. Jones JD, Aptel G, Brandhorst M, Jacquin M, Jiménez-Jiménez J, Jiménez-López A, Maireles-Torres P, Piwonski I, Rodríguez-Castellón E, Zajac J, Rozière J (2000) High surface area mesoporous titanium phosphate: synthesis and surface acidity determination. Mater Chem 10:1957–1963

    Article  CAS  Google Scholar 

  32. Alam Md, De S, Singh B, Saha B, Abu-Omar M (2014) Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl Catal A 486:42–48

    Article  CAS  Google Scholar 

  33. Nikitina M, Ivanova I (2016) Conversion of 2,3-butanediol over phosphate catalysts. ChemCatChem 8:1346–1353

    Article  CAS  Google Scholar 

  34. Paul M, Pal N, Rana BS, Sinha AK, Bhaumik A (2009) New mesoporous titanium–phosphorus mixed oxides having bifunctional catalytic activity. Catal Commun 10:2041–2045

    Article  CAS  Google Scholar 

  35. Li CL, Novaro O, Bokhimi X, Munoz E, Boldu JL, Wang JA, Lopez T, Gomez R, Batina N (2000) Coke formation on an industrial reforming Pt–Sn/γ-Al2O3 catalyst. Catal Lett 65:209–216

    Article  CAS  Google Scholar 

  36. Wolf EE, Alfani F (1982) Catalysts deactivation by coking. Catal Rev Sci Eng 24:329–371

    Article  CAS  Google Scholar 

  37. Leboda R, Charmas B, Sidorchuk VV (1997) Physicochemical and technological aspects of hydrothermal modification of complex sorbents and catalysts. II. Modification of phase composition and mechanical properties. Adsorpt Sci Technol 15:205–214

    Google Scholar 

  38. Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or ostwald ripening? Acc Chem Res 46:1720–1730

    Article  CAS  Google Scholar 

  39. Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269

    Article  CAS  Google Scholar 

  40. Ahmed R, Sinnathambiand CM, Subbarao D (2011) Kinetics of de-coking of spent reforming catalyst. J Appl Sci 11:1225–1230

    Article  CAS  Google Scholar 

  41. Li GJ, Zhang XH, Kawi S (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens Actuator B 60:64–70

    Article  CAS  Google Scholar 

  42. Hagen J (2015) Industrial catalysis. A practical approach, vol 3rd. Wiley, Weinheim

    Book  Google Scholar 

  43. Vantomme A, Leonard A, Yuan ZY, Su BL (2007) Self-formation of hierarchical micro-meso-macroporous structures: generation of the new concept “Hierarchical Catalysis”. Coll Surf A 300:70–78

    Article  CAS  Google Scholar 

  44. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46:481–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khalameida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalameida, S., Nebesnyi, R., Pikh, Z. et al. Catalytic aldol condensation of formaldehyde with acetic acid on titanium phosphates modified by different techniques. Reac Kinet Mech Cat 125, 807–825 (2018). https://doi.org/10.1007/s11144-018-1443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1443-8

Keywords

Navigation