Skip to main content
Log in

Theoretical study on the mechanisms and kinetics of the β-elimination of 2,2-dihaloethyltrihalosilanes (X = F, Cl, Br) compounds: a DFT study along with a natural bond orbital analysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The β-elimination kinetics of 2,2-dihaloethyltrihalosilanes in the gas phase has been studied computationally using density functional theory (DFT) along with the M06-2x exchange–correlation functional and the aug-cc-pVTZ basis set. The calculated energy profiles have been supplemented with calculations of rate constants under atmospheric pressure and in the fall-off regime, by means of transition state theory (TST), variational transition state theory (VTST), and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) theory. Activation energies and rate constants obtained using the M06-2x/aug-cc-pVTZ approaches are in good agreement with the available experimental data. Analysis of bond order, natural bond orbitals, and synchronicity parameters suggests that the β-elimination of the studied compounds can be described as concerted and slightly asynchronous. The transition states of these reactions correspond to four-membered cyclic structures. Based on the optimized ground state geometries, a natural bond orbital (NBO) analysis of donor–acceptor interactions also show that the resonance energies related to the electronic delocalization from \(\sigma_{{{\text{C}}_{ 1} {-}{\text{C}}_{ 2} }}\) bonding orbitals to \(\sigma^{*}_{{{\text{C}}_{ 2} - {\text{Si}}_{ 3} }}\) antibonding orbitals, increase from 2,2-difluoroethyltrifluorosilane to 2,2-dichloroethyltrichlorosilane and then to 2,2-dibromoethyltriboromosilane. The decrease of \(\sigma_{{{\text{C}}_{ 1} {-}{\text{C}}_{ 2} }}\) bonding orbitals occupancies and increase of the \(\sigma^{*}_{{{\text{C}}_{ 2} - {\text{Si}}_{ 3} }}\) antibonding orbitals occupancies through \(\sigma_{{{\text{C}}_{ 1} - {\text{C}}_{ 2} }} \to \sigma^{*}_{{{\text{C}}_{ 2} - {\text{Si}}_{ 3} }}\) delocalizations could facilitate the β-elimination of the 2,2-difluoroethyltrifluorosilane compound, compared to 2,2-dichloroethyltrichlorosilane and 2,2-dibromoethyltriboromosilane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haszeldine RN, Robinson PJ, Simmons RF (1964) J Chem Soc 0:1890

    Article  CAS  Google Scholar 

  2. Eaborn C (1960) Organosilicon compounds. Butterworths Scientific Publications, Ltd., London

    Google Scholar 

  3. Haszeldine RN, Young JC (1959) Proc Chem Soc 394

  4. Bevan WI, Haszeldine RN, Young JC (1961) Chem & Ind (London) 789

  5. Haszeldine RN, Newlands MJ, Plumb JB (1960) Proc Chem Soc 4:147

    Google Scholar 

  6. Bell TN, Haszeldine RN, Newlands MJ, Plumb JB (1965) J Chem Soc 0:2107

    Article  CAS  Google Scholar 

  7. Haszeldine RN, Robinson PJ, Simmons RF (1967) J Chem Soc B 1357

  8. Davidson IMT, Eaborn C, Lilly MN (1964) J Chem Soc 2624

  9. Davidson IMT, Metcalfe CJL (1964) J Chem Soc 2630

  10. Davidson IMT, Jones MR (1965) J Chem Soc 5481

  11. Davidson IMT, Jones MR, Pett C (1967) J Chem Soc B 937

  12. Fishwick G, Haszeldine RN, Parkinson C, Robinson PJ, Simmons RF (1965) J Chem Soc Chem Commun 382

  13. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  14. Johnston HS (1966) Gas phase reaction rate theory. Roland Press, New York

    Google Scholar 

  15. Laidler KJ (1969) Theories of chemical reaction rates. McGraw-Hill, New York

    Google Scholar 

  16. Weston RE, Schwartz HA (1972) Chemical kinetics. Prentice-Hall, New York

    Google Scholar 

  17. Rapp D (1972) Statistical mechanics. Holt, Rinehart, and Winston, New York

    Google Scholar 

  18. Nikitin EE (1974) Theory of elementary atomic and molecular processes in gases. Clarendon Press, Oxford

    Google Scholar 

  19. Smith IWM (1980) Kinetics and dynamics of elementary gas reactions. Butterworths, London

    Google Scholar 

  20. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  21. Vanden-Eijnden E, Tal FA (2005) J Chem Phys 123:184103

    Article  Google Scholar 

  22. Garret BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730

    Article  Google Scholar 

  23. Garret BC, Truhlar DG (1979) J Am Chem Soc 101:4534

    Article  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  25. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  26. Robinson PJ, Holbrook KA (1972) Unimolecular reactions. Wiley, New York

    Google Scholar 

  27. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  28. Eyring H, Lin SH, Lin SM (1980) Basic chemical kinetics. Wiley, New York

    Google Scholar 

  29. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  30. Badenhoop JK, Weinhold F (1999) Int J Quantum Chem 72:269

    Article  CAS  Google Scholar 

  31. Knippenberg S, Bohnwagner MV, Harbach PH, Dreuw A (2015) J Phys Chem A 119:1323

    Article  CAS  Google Scholar 

  32. Frenette M, Hatamimoslehabadi M, Bellinger-Buckley S, Laoui S, La J, Bag S, Mallidi S, Hasan T, Bouma B, Yelleswarapu C, Rochford J (2014) J Am Chem Soc 136:15853

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford

    Google Scholar 

  34. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  35. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  36. Chang R (2005) Physical chemistry for the biosciences. University Science Books, Sausalito

    Google Scholar 

  37. Moore JW, Pearson RG (1981) Kinetics and mechanism—The study of homogeneous chemical reactions. Wiley, New York

    Google Scholar 

  38. Carstensen HH, Dean AM, Deutschmann O (2007) Proc Combust Inst 31:149

    Article  Google Scholar 

  39. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  40. Johnson HS, Heicklen J (1962) J Phys Chem 66:532

    Article  Google Scholar 

  41. Canneaux S, Bohr F, Henon E (2014) J Comput Chem 35:82

    Article  CAS  Google Scholar 

  42. Shiroudi A, Zahedi E (2016) RSC Adv 6:91882

    Article  CAS  Google Scholar 

  43. Marquez E, Mora JR, Cordova T, Chuchani G (2009) J Phys Chem A 113:2600

    Article  CAS  Google Scholar 

  44. Troe J (1977) J Chem Phys 66:4758

    Article  CAS  Google Scholar 

  45. Mourits FM, Rummens HA (1977) Can J Chem 55:3007

    Article  CAS  Google Scholar 

  46. Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon-Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, McLellan CL, Adigun O, Houf WG, Chou CP, Miller SF, Ho P, Young PD, Young DJ, Hodgson DW, Petrova MV, Puduppakkam KV (2010) CHEMKIN. Reaction Design Inc., San Diego

    Google Scholar 

  47. Wigner E (1937) J Chem Phys 5:720

    Article  CAS  Google Scholar 

  48. Horiuti J (1938) Bull Chem Soc Jpn 13:210

    Article  Google Scholar 

  49. Keck JC (1960) J Chem Phys 32:1035

    Article  CAS  Google Scholar 

  50. Keck JC (1967) Adv Chem Phys 13:85

    Google Scholar 

  51. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159

    Article  CAS  Google Scholar 

  52. Garrett BC, Truhlar DG (1979) J Phys Chem 83:1052

    Article  CAS  Google Scholar 

  53. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593

    Article  CAS  Google Scholar 

  54. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440

    Article  CAS  Google Scholar 

  55. Evans MG, Polanyi M (1938) Trans Faraday Soc 34:11

    Article  CAS  Google Scholar 

  56. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) Theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, pp 65–137

    Google Scholar 

  57. Baer T, Hase WL (1996) Unimolecular reaction dynamics. Oxford University Press, Oxford

    Google Scholar 

  58. Garrett BC, Truhlar DG (1979) J Phys Chem 83:1079

    Article  CAS  Google Scholar 

  59. Gilbert RG, Smith SC (1990) Theory of unimolecular and recombination reactions. Blackwell Scientific, Oxford

    Google Scholar 

  60. Klippenstein SJ, Yang Y-C, Ryzhov V, Dunbar RC (1996) J Chem Phys 104:4502

    Article  CAS  Google Scholar 

  61. Wardlaw DM, Marcus RA (1988) Adv Chem Phys 70:231

    CAS  Google Scholar 

  62. Hase WL, Wardlaw DM (1989) In Ashfold MNR, Baggott JE (eds) Advances in gas-phase photochemistry and kinetics: bimolecular collisions. Royal Society, London, p 171

  63. Klippenstein SJ (1995) In: Liu K, Wagner AF (eds) Advances in physical chemistry: the chemical dynamics and kinetics of small radicals, vol 1. World scientific, Singapore

  64. Taatjes CA, Klippenstein SJ (2001) J Phys Chem A 105:8567

    Article  CAS  Google Scholar 

  65. Isaacson AD, Truhlar DG, Rai SN, Steckler R, Hancock GC, Garrett BC, Redmon M (1987) J Comput Phys Commun 47:91

    Article  CAS  Google Scholar 

  66. Borisov YA, Arcia EE, Mielke SL, Garrett BC, Dunning TH Jr (2001) J Phys Chem A 105:7724

    Article  CAS  Google Scholar 

  67. Hammond GS (1953) J Am Chem Soc 77:334

    Article  Google Scholar 

  68. Agmon N, Levine RD (1977) Chem Phys Lett 52:197

    Article  CAS  Google Scholar 

  69. Maccoll A (1958) J Chem Soc 3398

  70. Sun W, Yang L, Yu L, Saeys M (2009) J Phys Chem A 113:7852

    Article  CAS  Google Scholar 

  71. Lendvay G (1989) J Phys Chem 93:4422

    Article  CAS  Google Scholar 

  72. Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  73. Reed E, Carpenter JE, Weinhold F, NBO version 3.1

  74. Moyano A, Periclas MA, Valenti E (1989) J Org Chem 54:573

    Article  CAS  Google Scholar 

  75. Rosas F, Dominguez RM, Tosta M, Mora JR, Marquez E, Cordova T, Chuchani G (2010) J Phys Org Chem 23:743

    Article  CAS  Google Scholar 

  76. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  77. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Shiroudi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11144_2017_1332_MOESM1_ESM.pdf

Supplementary material 1 (PDF 105 kb). Table S1 Unimolecular rate constants for all reaction steps involved in the reported chemical pathways (results obtained by means of RRKM theory at different pressures and temperatures, according to the computed M06-2x/aug-cc-pVTZ energy profiles)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliaey, A.R., Shiroudi, A., Zahedi, E. et al. Theoretical study on the mechanisms and kinetics of the β-elimination of 2,2-dihaloethyltrihalosilanes (X = F, Cl, Br) compounds: a DFT study along with a natural bond orbital analysis. Reac Kinet Mech Cat 124, 27–44 (2018). https://doi.org/10.1007/s11144-017-1332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1332-6

Keywords

Navigation