Skip to main content
Log in

Theoretical investigation of non-uniform bifunctional catalyst for the aromatization of methyl cyclopentane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, a mathematical model is considered to investigate the influence of the concentration and the non-uniform distribution of the catalytic sites on the performances of an isothermal fixed bed reactor with axial dispersion and mass transfer resistance under steady state conditions. This model is applied to the methyl cyclopentane aromatization network. The simulation of the model for a particular chemical reaction network showed that the catalyst activity depends on the balance between the number, per unit volume, of the active sites and the way they are distributed throughout the pellet. The model involves the use of two types of catalytic functions (bi-functional) and can be applied to any chemical reaction network related to catalytic reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A i , A j :

Active species

\(C_{sI}\) :

Average concentration of the acid sites (site/cm 3)

\(C_{sII}\) :

Average concentration of the metallic sites (site/cm 3)

\(Bio\) :

Biot number

\(c_{i}\) :

Concentration of species A i inside the pellet (mol/cm 3)

\(c_{i,s}\) :

Concentration of species A i at the surface of pellet (mol/cm 3)

\(u_{i}\) :

Concentration of species A i in the fluid phase (mol/cm 3)

\(u_{i0}\) :

Concentration of species A i just before the entrance of the reactor (mol/cm 3)

\(u_{i} \left( 0 \right)\) :

Concentration of species A i at the entrance of the reactor (mol/cm 3)

\(U_{i}\) :

Dimensionless concentration of A i species in the fluid phase

\(X_{c} \left( \xi \right) = 1 - U_{1} \left( \xi \right)\) :

Conversion

Ψ i :

Dimensionless concentration of A i species in the solid phase

ρ :

Dimensionless radial position in the catalytic particle

\(\xi\) :

Dimensionless axial coordinate of the reactor

\(K_{L}^{*}\) :

Dimensionless mass transfer coefficient

\(\varPhi_{\ell }\) :

Dimensionless distribution function of the active sites

\(D\) :

Effective diffusion coefficient (cm 2/s)

\(D_{ea}\) :

Effective axial dispersion coefficient (cm 2/s)

\(a\) :

Indicates the half thickness of the catalytic pellet (cm)

\(r_{ij}\) :

Kinetic rate (mol/cm 3 s)

\(k_{ij}\) :

Kinetic constant (cm 3 / site s)

\(S\) :

Number of species

\(x\) :

Position in relation with the particle center (cm)

\(\varepsilon\) :

Porosity of the catalytic bed

\(\mu\) :

Parameter denoting the type of the distribution

\(Pe\) :

Peclet number

\(L\) :

Reactor length

\(\tau_{s}\) :

Residence time in the fluid phase (s)

\(\tau_{D}\) :

Diffusion time in the catalytic pellet (s)

References

  1. Wei J, Becker ER (1977) The optimum distribution of catalytic material on support layers in automotive catalysis. Adv Chem Ser 143:116

    Article  Google Scholar 

  2. Becker ER, Wei J (1977) Nonuniformly distribution of catalysts on supports.I. Bimolecular Langmuir reactions. J Catal 46:365

    Article  CAS  Google Scholar 

  3. Dario RA, Ardilese R, Scelza OA, Castro AA (1985) Activity and selectivity of nonuniform bifunctional catalysts. Collect Czech Chem Commun 50:726

    Article  Google Scholar 

  4. Dario RA, Ardilese R (1985) Activity and selectivity of nonuniform bifunctional catalysts: analysis of the fixed -bed reactor performance. Collect Czech Chem Commun 51:2509

    Google Scholar 

  5. Morbidelli M, Servida A, Varma A (1982) Optimal catalyst activity profiles in pellets.1.The case of negligible external mass transfer resistance. Ind Eng Chem Fundam 21:278

    Article  CAS  Google Scholar 

  6. Morbidelli M, Varma A (1982) Optimal catalyst activity profiles in pellets. 2. The influence of external mass transfer resistance. Ind Eng Chem Fundam 21:284

    Article  CAS  Google Scholar 

  7. Chemburkar RM, Morbidelli M, Varma A (1987) Optimal catalyst activity profiles in pellets- VII. The case of arbitrary reaction kinetics with finite external heat and mass transport resistance. Chem Eng Sci 42:1

    Article  Google Scholar 

  8. Gavriilidis A, Varma A (1992) Optimal catalyst activity distribution in pellets—study of ethylene epoxydation. AIChE J 38:291

    Article  CAS  Google Scholar 

  9. Gavriilidis A, Varma A, Morbidelli M (1993) Optimal distribution of catalyst in pellets. Catal Rev Sci 35(3):399–456

    Article  CAS  Google Scholar 

  10. Baratti R, Gavriilidis A, Morbidelli M, Varma A (1994) Optimization of a nonisothermal non adiabatic fixed-bed reactor using Dirac- type silver catalysts for ethylene epoxydation. Chem Eng Sci 49:12

    Article  Google Scholar 

  11. Baratti R, Feckova V, Morbidelli M, Varma A (1997) Optimal catalyst activity profiles in pellets11. The case of multiple-step distributions. Ind eng Chem Res 36:3416–3420

    Article  CAS  Google Scholar 

  12. Drewsen A, Ljungqvist A, SkoglundhM Andersson B (2000) Effect of the radial distribution of nplatinum in spherical alumina catalyst on the oxidation of Co in air. Chem Eng Sci 55:4939–4951

    Article  CAS  Google Scholar 

  13. Brunovskà A (1987) Dynamic behaviour of a catalyst pellet with nonuniform activity distribution. Chem Eng Sci 42:8

    Article  Google Scholar 

  14. Brunovskà A, Morbidelli M, Brunovsky P (1990) Optimal catalyst pellet activity distributions for deactiving systems. Chem Eng Sci 45:4

    Article  Google Scholar 

  15. Barto M, Markos J, Brunovska A (1991) Dynamic Behaviour of an isothermal fixed-bed reactor with narrow activity region catalyst. Chem Eng Sci 46:5–6

    Google Scholar 

  16. Wu H, Brunovska A, Morbidelli M (1990) Optimal catalyst activity profiles in pellets-VIII. General nonisothermal reacting systems with arbitrary kinetics. Chem Eng Sci 45:7

    Google Scholar 

  17. Barto M, Markos J, Brunovskà A (1991) Oscillatory behaviour of a catalyst pellet with narrow region of activity. Chem Eng Sci 46:11

    Article  Google Scholar 

  18. Pavlou S, Vayenas C (1990) Optimal catalyst activity profile in pellets with shell- progressive poisoning: the case of the fast linear kinetics. Chem Eng Sci 45:3

    Article  Google Scholar 

  19. Pavlou S, Vayenas C (1988) Optimal catalyst distribution for selectivity maximization in nonisothermal pellets: the case of parallel reactions. Chem Eng Sci 43:10

    Google Scholar 

  20. Pavlou S, Vayenas C (1990) Optimal catalyst activity distribution in pellets for selectivity maximization in triangular nonisothermal reactions systems: application to cases of light olefin epoxydation. J. Catal. 122(2):389–405

    Article  CAS  Google Scholar 

  21. Let ova Z, Markos J (1998) Design of catalyst with nonuniform activation distribution for Consecutive reactions selective hydrogenation of acetylene on Pd/alumina catalyst. Petroleum and Coal 40:75182

  22. Cominos V, Gavriilidis A (2001) Theoretical investigation of axially non- uniform catalytic monoliths for methane combustion. Chem Eng Sci 56:3455

    Article  CAS  Google Scholar 

  23. Hwang S, Linke P, Smith R (2004) Heterogeneous catalytic reactor design with optimum temperature profile II: application of non-uniform catalyst. Chem Eng Sci 59:4245

    Article  CAS  Google Scholar 

  24. Lawrence P, Grunewald M, Agar D (2005) Spatial distribution of functionalities in an adsorptive reactor at the particle level. Catal Today 105:582

    Article  CAS  Google Scholar 

  25. Dietrich W, Lawrence P, Grunewald M, Agar D (2005) Theoretical studies on multifunctional catalysts with integrated adsorption sites. Chem Eng 107:103

    Article  CAS  Google Scholar 

  26. Khanaev V, Borisova E, Noskov A (2005) Optimization of the active component distribution through the catalyst bed for the case of adiabatic reactor. Chem Eng Sci 60:5792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Boukezoula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukezoula, T.F., Bencheikh, L. Theoretical investigation of non-uniform bifunctional catalyst for the aromatization of methyl cyclopentane. Reac Kinet Mech Cat 124, 15–25 (2018). https://doi.org/10.1007/s11144-017-1308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1308-6

Keywords

Navigation