Skip to main content
Log in

Analysis of transition from low to high iodide and iodine state in the Briggs–Rauscher oscillatory reaction containing malonic acid using Kolmogorov–Johnson–Mehl–Avrami (KJMA) theory

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The oscillatory behavior is not the only interesting nonlinear phenomena that appeared in the Briggs–Rauscher (BR) reaction. The BR reaction containing malonic acid may undergo a sudden transition from low (the state I) to high iodide and iodine (the state II) concentration states. This paper focuses on the mixture with an immutable [CH2(COOH)2]0/[IO3 ]0 = 1.5 value, where state I to state II transition occurs after a time delay and BR reaction ended with a solution abundant of solid iodine. The state I to the state II transition curves obtained at different temperatures were analyzed using the Kolmogorov–Johnson–Mehl–Avrami (KJMA) theory. The KJMA theory was applied for monitoring the crystallization process of isolated solid iodine product at various levels of operating temperatures. At T < 33.5 °C, we have one type of the process and iodine was formed by autocatalysis pathway. On the other hand, at T ≥ 33.5 °C, two processes occur. With the rise in operating temperature, the emergence of inhomogeneous distribution of nuclei was identified and it was established the primary and secondary crystallization processes of iodine. At elevated temperatures, it was also found that the strong influence of impingement mechanism exists. Results obtained are the first step toward elucidation of the complex reaction mechanism of the state I → state II transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Briggs TS, Rauscher WC (1973) An oscillating iodine clock. J Chem Educ 50:496

    Article  CAS  Google Scholar 

  2. Furrow SD, Noyes RM (1982) The oscillatory Briggs–Rauscher reaction. 1. Examination of subsystems. J Am Chem Soc 104:38–42

    Article  CAS  Google Scholar 

  3. Noyes RM, Furrow SD (1982) The oscillatory Briggs–Rauscher reaction. 3. A skeleton mechanism for oscillations. J Am Chem Soc 104:45–48

    Article  CAS  Google Scholar 

  4. Furrow SD (2012) A modified recipe and variations for the Briggs–Rauscher oscillating reaction. J Chem Educ 89:1421–1424

    Article  CAS  Google Scholar 

  5. Furrow SD, Cervellati R, Amadori G (2002) New substrates for the oscillating Briggs–Rauscher reaction. J Phys Chem A 106:5841–5850

    Article  CAS  Google Scholar 

  6. Furrow SD, Aurentz DJ (2010) Reactions of iodomalonic acid, diiodomalonic acid, and other organics in the Briggs–Rauscher oscillating system. J Phys Chem A 114(7):2526–2533

    Article  CAS  Google Scholar 

  7. Bray WC (1921) A periodic reaction in homogeneous solution and its relation to catalysis. J Am Chem Soc 43(6):1262–1267

    Article  CAS  Google Scholar 

  8. Bray WC, Liebhafsky HA (1931) Reactions involving hydrogen peroxide, iodine and iodate ion. I. Introduction. J Am Chem Soc 53:38–44

    Article  CAS  Google Scholar 

  9. Schmitz G, Furrow S (2012) Kinetics of the iodate reduction by hydrogen peroxide and relation with the Briggs–Rauscher and Bray–Liebhafsky oscillating reactions. Phys Chem Chem Phys 14:5711–5717

    Article  CAS  Google Scholar 

  10. De Kepper P, Epstein IR (1982) Mechanistic study of oscillations and bistability in the Briggs–Rauscher reaction. J Am Chem Soc 104:49–55

    Article  Google Scholar 

  11. Vukojević V, Sørensen PG, Hynne FJ (1996) Predictive value of a model of the Briggs–Rauscher reaction fitted to quenching experiments. J Phys Chem 100:17175–17185

    Article  Google Scholar 

  12. Turányi T (1991) Rate sensitivity analysis of a model of the Briggs–Rauscher reaction. React Kinet Catal Lett 45:235–241

    Article  Google Scholar 

  13. Kim KR, Shin KJ, Lee Dong J (2004) Complex oscillations in a simple model for the Briggs–Rauscher reaction. J Chem Phys 121:2664–2672

    Article  CAS  Google Scholar 

  14. Čupić Ž, Lj Kolar-Anić, Anić S, Maćešić S, Maksimović J, Pavlović M, Milenković M, Bubanja IN, Greco E, Furrow SD, Cervellati R (2014) Regularity of intermittent bursts in Briggs–Rauscher oscillating system with phenol. Helv Chim Acta 97:321–333

    Article  Google Scholar 

  15. Bishop MKJ, Fialkowski M, Grzybowski BA (2005) Micropatterning chemical oscillations: waves, autofocusing, and symmetry breaking. J Am Chem Soc 127:15943–15948

    Article  CAS  Google Scholar 

  16. Furrow SD, Cervellati R, Greco E (2012) A Study of the cerium-catalyzed Briggs-Rauscher oscillating reaction. Z Naturforsch 67b:89–97

    Article  Google Scholar 

  17. Cervellati R, Höner K, Furrow SD, Neddens C, Costa S (2001) The Briggs–Rauscher reaction as a test to measure the activity of antioxidants. Helv Chim Acta 84(12):3533–3547

    Article  CAS  Google Scholar 

  18. Rinaldo C, Renzulli C, Guerra MC, Speroni E (2002) Evaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs–Rauscher reaction method. J Agric Food Chem 50:7504–7509

    Article  Google Scholar 

  19. Cervellati R, Furrow SD (2007) Perturbations of the Briggs–Rauscher oscillating system by iron-phenanthroline complexes. Inorg Chim Acta 360:842–848

    Article  CAS  Google Scholar 

  20. Stanisavljev D, Milenković MC, Mojović M, Popović-Bijelić A (2011) Oxygen centered radicals in iodine chemical oscillators. J Phys Chem A 115(27):7955–7958

    Article  CAS  Google Scholar 

  21. Stanisavljev DR, Milenković MC, Popović-Bijelić AD, Mojović MD (2013) Radicals in the Bray–Liebhafsky oscillatory reaction. J Phys Chem A 117(16):3292–3295

    Article  CAS  Google Scholar 

  22. Milenković MC, Potkonjak NI (2014) The effect of hydroxycinnamic acids on oxy-radical generating iodide-hydrogen peroxide reaction. Bull Chem Soc Jpn 87(11):1255–1259

    Article  Google Scholar 

  23. Pagnacco MC, Mojović MD, Popović-Bijelić AD, Horváth AK (2017) Investigation of the halogenate-hydrogen peroxide reactions using the electron paramagnetic resonance spin trapping technique. J Phys Chem A 121(17):3207–3212

    Article  CAS  Google Scholar 

  24. Furrow SD, Cervellati R, Greco E (2016) Study of the transition to higher iodide in the malonic acid Briggs–Rauscher oscillator. Reac Kinet Mech Cat 118:59–71

    Article  CAS  Google Scholar 

  25. Kolmogorov AN (1937) On the statistical theory of crystallization of metals. Izv Akad Nauk SSSR Ser Mat 3:355–359

    Google Scholar 

  26. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng 135:416–442

    Google Scholar 

  27. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  28. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  29. Avrami M (1941) Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  30. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  Google Scholar 

  31. Biswas K, Ram S, Schultz L, Eckert J (2005) Crystallization kinetics of amorphous Fe67Co9.5Nd3Dy0.5B20. J Alloys Compd 397:104–109

    Article  CAS  Google Scholar 

  32. Ruitenberg G, Petford-Long AK, Doole RC (2002) Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J Appl Phys 92:3116–3123

    Article  CAS  Google Scholar 

  33. Brown ME, Dollimore D, Galwey AK (1980) Theory of solid state reaction kinetics. Compr Chem Kinet 22:41–113

    Article  Google Scholar 

  34. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6:183–195

    Article  Google Scholar 

  35. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Determination and interpretation of isothermal and non-isothermal transformation kinetics. The effective activation energies in terms of nucleation and growth. J Mater Sci 37:1321–1332

    Article  CAS  Google Scholar 

  36. Vanag VK, Alfimov MV (1993) Light-induced nonequilibrium phase transition between quasistationary states of the Briggs–Rauscher reaction under batch conditions. J Phys Chem 97:1878–1883

    Article  CAS  Google Scholar 

  37. Vanag VK, Alfimov MV (1993) Effects of stirring on photoinduced phase transition in a batch-mode Briggs–Rauscher reaction. J Phys Chem 97:1884–1890

    Article  CAS  Google Scholar 

  38. Stanisavljev DR, Dramićanin MD (2007) Excessive excitation of hydrogen peroxide during oscillatory chemical evolution. J Phys Chem A 111(32):7703–7706

    Article  CAS  Google Scholar 

  39. Stanisavljev DR (2010) Energy dynamics in the Bray–Liebhafsky oscillatory reaction. J Phys Chem A 114(2):725–729

    Article  CAS  Google Scholar 

  40. Sun NX, Liu XD, Lu K (1996) An explanation to the anomalous Avrami exponent. Scr Mater 34:1201–1207

    Article  CAS  Google Scholar 

  41. Skrdla PJ, Robertson RT (2005) Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals. J Phys Chem B 109:10611–10619

    Article  CAS  Google Scholar 

  42. Ghilani CD (2010) Adjustment computations: spatial data analysis, 5th edn. Wiley, Hoboken

    Google Scholar 

  43. Kooi BJ (2004) Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: extension of the Johnson–Mehl–Avrami–Kolmogorov theory. Phys Rev B 70:224108

    Article  Google Scholar 

Download references

Acknowledgements

The present investigations were supported by The Ministry of Education, Science and Technological Development of the Republic of Serbia, under Project 172015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja C. Pagnacco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagnacco, M.C., Maksimović, J.P. & Janković, B.Ž. Analysis of transition from low to high iodide and iodine state in the Briggs–Rauscher oscillatory reaction containing malonic acid using Kolmogorov–Johnson–Mehl–Avrami (KJMA) theory. Reac Kinet Mech Cat 123, 61–80 (2018). https://doi.org/10.1007/s11144-017-1288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1288-6

Keywords

Navigation