Skip to main content
Log in

Mesoporous Ce1−x Mn x O2 mixed oxides with CuO loading for the catalytic total oxidation of propane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

High-surface-area mesoporous Ce1−x Mn x O2 mixed oxides were prepared by a surfactant-assisted method of nanocrystalline particle assembly, and their catalytic properties for the total oxidation of propane were evaluated using a microreactor–GC system. The prepared Ce1−x Mn x O2 particles were nanoscaled with fluorite structure, possessing a mesoporous structure with uniform pore-size distribution, which demonstrated very high activity for the propane total oxidation. The promoting effect of CuO on the catalytic activity of Ce1−x Mn x O2 was also investigated, indicating that the addition of copper could improve the catalytic activity for propane conversion. The catalytic behavior depended on the Ce/Mn ratio, the surface area and the mesoporosity of the catalysts. The catalyst with the Ce/Mn ratio of 1.5 exhibited the highest catalytic activity, suggesting a good candidate for replacing noble metal catalysts in the propane total oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khan FI, Ghoshal AKr (2000) Removal of volatile organic compounds from polluted air. J Loss Prevent Proc Ind 13:527–545

    Article  Google Scholar 

  2. Deng QF, Ren TZ, Yuan ZY (2013) Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. React Kinet Mech Cat 108:507–518

    Article  CAS  Google Scholar 

  3. Todorova S, Kolev H, Holgado JP, Kadinov G, Bonev Ch, Pereniguez R, Caballero A (2009) Complete n-hexane oxidation over supported Mn–Co catalysts. Appl Catal B 94:46–54

    Google Scholar 

  4. Tidahy HL, Siffert S, Lamonier JF, Zhilinskaya EA, Aboukaïs A, Yuan ZY, Vantomme A, Su BL, Canet X, De Weireld G, Frère M, N’Guyen TB, Giraudon JM, Leclercq G (2006) New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2–TiO2 catalysts for VOCs total oxidation. Appl Catal A 310:61–69

    Article  CAS  Google Scholar 

  5. Cao JL, Shao GS, Ma TY, Wang Y, Ren TZ, Wu SH, Yuan ZY (2009) Hierarchical meso-macroporous titania-supported CuO nanocatalysts: preparation, characterization and catalytic CO oxidation. J Mater Sci 44:6717–6726

    Article  CAS  Google Scholar 

  6. Cao JL, Wang Y, Zhang TY, Wu SH, Yuan ZY (2008) Preparation, characterization and catalytic behaviour of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Appl Catal B 78:120–128

    Article  CAS  Google Scholar 

  7. Agula B, Deng QF, Jia ML, Liu Y, Zhaorigetu B, Yuan ZY (2011) Catalytic oxidation of CO and toluene over nanostructured mesoporous NiO/Ce0.8Zr0.2O2 catalysts. React Kinet Mech Catal 103:101–112

    Article  Google Scholar 

  8. Morales MR, Barbero BP, Cadús LE (2006) Total oxidation of ethanol and propane over Mn–Cu mixed oxide catalysts. Appl Catal B 67:229–236

    Article  CAS  Google Scholar 

  9. Kim M, Cho K, Shin CH, Kang SE, Ham SW (2011) Total oxidation of propane over Cu–Mn mixed oxide catalysts prepared by co-precipitation method. Korean J Chem Eng 28:1139–1143

    Article  CAS  Google Scholar 

  10. Solsona B, Vazquez I, Garcia T, Davies TE, Taylor SH (2007) Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst. Catal Lett 116:116–121

    Article  CAS  Google Scholar 

  11. Liu Q, Wang LC, Chen M, Cao Y, He HY, Fan KN (2009) Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J Catal 263:104–113

    Article  CAS  Google Scholar 

  12. Luo JY, Meng M, Yao JS, Li XG, Zha YQ, Wang X, Zhang TY (2009) One-step synthesis of nanostructured Pd-doped mixed oxides MO x –CeO2 (M = Mn, Fe, Co., Ni, Cu) for efficient CO and C3H8 total oxidation. Appl Catal B 87:92–103

    Article  CAS  Google Scholar 

  13. Solsona B, Garcia T, Agouram S, Hutchings GJ, Taylor SH (2011) The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Appl Catal B 101:388–396

    Article  CAS  Google Scholar 

  14. Heynderickx PM, Thybaut JW, Poelman H, Poelman D, Marin GB (2010) The total oxidation of propane over supported Cu and Ce oxides: a comparison of single and binary metal oxides. J Catal 272:109–120

    Article  CAS  Google Scholar 

  15. Heynderickx MP, Thybaut JW, Poelman H, Poelman D, Marin GB (2010) Kinetic modeling of the total oxidation of propane over CuO–CeO2/Al2O3. Appl Catal B 95:26–38

    Article  CAS  Google Scholar 

  16. Wang CH, Lin SS, Chen CL, Weng HS (2006) Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere 64:503–509

    Article  CAS  Google Scholar 

  17. Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Catalytic oxidation of benzene over CuO/Ce1−x Mn x O2 catalysts. Appl Catal B 103:143–148

    Article  CAS  Google Scholar 

  18. Cao JL, Deng QF, Yuan ZY (2009) Mesoporous Ce0.8Zr0.2O2 solid solutions supported CuO nanocatalysts for CO oxidation: a comparative study of preparation methods. J Mater Sci 44:6663–6669

    Article  CAS  Google Scholar 

  19. Zhang TY, Wang SP, Yu Y, Su Y, Guo XZ, Wang SR, Zhang SM, Wu SH (2008) Synthesis, characterization of CuO/Ce0.8Sn0.2O2 catalysts for low-temperature CO oxidation. Catal Commun 9:1259–1264

    Article  CAS  Google Scholar 

  20. Zou ZQ, Meng M, Zha YQ (2009) Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnO x –CeO2 and Pd/MnO x –CeO2 catalysts used for CO and C3H8 oxidation. J Phys Chem C 114:468–477

    Article  Google Scholar 

  21. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) MnO x –CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  22. Idakiev V, Tabakova T, Yuan ZY, Su BL (2004) Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction. Appl Catal A 270:135–141

    Article  CAS  Google Scholar 

  23. Cao JL, Wang Y, Yu XL, Wang SR, Wu SH, Yuan ZY (2008) Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl Catal B 79:26–34

    Article  CAS  Google Scholar 

  24. Peng CT, Lia HK, Liaw BJ, Chen YZ (2011) Removal of CO in excess hydrogen over CuO/Ce1−x Mn x O2 catalysts. Chem Eng J 172:452–458

    Article  CAS  Google Scholar 

  25. Zeng C, Ma R, Liu X, Luo M, Lu J (2010) Catalytic oxidation of dichloride methane over Ce1−x Mn x O2 catalysts. J Chin Rare Earth Soc 28:306–310

    CAS  Google Scholar 

  26. Ye Q, Gao Q, Zhang XR, Xu BQ (2006) Cataluminescent characteristics of catalytic ethanol oxidation over Ce1−x Mn x O2 catalysts. Acta Chim Sin 64:751–755

    CAS  Google Scholar 

  27. Yuan ZY, Su BL (2003) Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite). Chem Phys Lett 381:710–714

    Article  CAS  Google Scholar 

  28. Ren TZ, Yuan ZY, Su BL (2003) Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem Phys Lett 374:170–175

    Article  CAS  Google Scholar 

  29. Sing KSW, Everett DH, Haul RAW, Moscou L (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  30. Yang YN, Huang R, Chen L, Zhang JY (1993) Redox behavior of trimanganese tetraoxide catalysts. Appl Catal A 101:233–252

    Article  CAS  Google Scholar 

  31. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) CuO/CeO2 catalysts: redox features and catalytic behaviors. Appl Catal A 288:116–125

    Article  CAS  Google Scholar 

  32. Avgouropoulos G, Ioannides T (2003) Selective CO oxidation over CuO–CeO2 catalysts prepared via the urea–nitrate combustion method. Appl Catal A 244:155–167

    Article  CAS  Google Scholar 

  33. Yu D, Xingyi W, Dao L, Qiguang D (2011) Catalytic combustion of chlorobenzene over Mn–Ce–La–O mixed oxide catalysts. J Hazard Mater 188:132–139

    Article  Google Scholar 

  34. Li J, Zhu P, Zhou R (2011) Effect of the preparation method on the performance of CuO–MnO x –CeO2 catalysts for selective oxidation of CO in H2-rich streams. J Power Sources 196:9590–9598

    Article  CAS  Google Scholar 

  35. Fan J, Wu X, Liang Q, Ran R, Weng D (2008) Thermal ageing of Pt on low-surface-area CeO2–ZrO2–La2O3 mixed oxides: effect on the OSC performance. Appl Catal B 81:38–48

    Article  CAS  Google Scholar 

  36. Bozo C, Guilhaume N, Herrmann JM (2001) Role of the ceria–zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions. J Catal 203:393–406

    Article  CAS  Google Scholar 

  37. Zou ZQ, Meng M, Guo LH, Zha YQ (2009) Synthesis and characterization of CuO/Ce1−x Ti x O2 catalysts used for low-temperature CO oxidation. J Hazard Mater 163:835–842

    Article  CAS  Google Scholar 

  38. Chen H, Sayari A, Adnot A, Larachi FC (2001) Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation. Appl Catal B 32:195–204

    Article  Google Scholar 

  39. Li H, Lu G, Dai Q, Wang Y, Guo Y (2011) Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl Catal B 102:475–483

    Article  CAS  Google Scholar 

  40. Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Basic evidence of the molecular dispersion of MnCeO x catalysts synthesized via a novel “redox-precipitation” route. Chem Mater 19:2269–2276

    Article  CAS  Google Scholar 

  41. Luo JY, Meng M, Zha YQ, Guo LH (2008) Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO–CeO2 and Co3O4–CeO2 catalysts. J Phys Chem C 112:8694–8701

    Article  CAS  Google Scholar 

  42. Zhang L, Weng D, Wang B, Wu X-D (2010) Effects of sulfation on the activity of Ce0.67Zr0.33O2 supported Pt catalyst for propane oxidation. Catal Commun 11:1229–1232

    Article  CAS  Google Scholar 

  43. Solsona B, Pérez-Cabero M, Vázquez I, Dejoz A, García T, Álvarez-Rodríguez J, El-Haskouri J, Beltrán D, Amorós P (2012) Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chem Eng J 187:391–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20973096 and 21076056), the National Basic Research Program of China (2009CB623502), the Specialized Research Fund for the Doctoral Program of Higher Education (20110031110016), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1059), and the 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, TZ., Xu, PB., Deng, QF. et al. Mesoporous Ce1−x Mn x O2 mixed oxides with CuO loading for the catalytic total oxidation of propane. Reac Kinet Mech Cat 110, 405–420 (2013). https://doi.org/10.1007/s11144-013-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0603-0

Keywords

Navigation