Skip to main content
Log in

Simulation of the catalytic oxidation of soot

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Soot oxidation by supported metal nanoparticles is simulated by using the Monte Carlo technique. The coarse-grained lattice model proposed for this process describes the deposition, diffusion, aggregation and reaction of carbon nanoparticles. Each carbon or catalyst nanoparticle is assumed to occupy a single site of a 3D cubic lattice. With increasing deposition rate (or decreasing reaction rate), the model predicts a transition from the steady state with a submonolayer of soot to the growth of mesoscopic 3D carbon agglomerates. In these cases, the reaction rate is, respectively, close to and lower than the deposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fino D (2007) Sci Technol Adv Mater 8:93

    Article  CAS  Google Scholar 

  2. van Setten BAAL, Makkee M, Moulijn JA (2001) Catal Rev Sci Eng 43:489

    Article  CAS  Google Scholar 

  3. Stanmore BR, Brilhac JF, Gilot P (2001) Carbon 39:2247

    Article  CAS  Google Scholar 

  4. Shimizu K-I, Kawachi H, Komai SI, Yoshida K, Sasaki Y, Satsuma A (2011) Catal Today 175:93

    Article  CAS  Google Scholar 

  5. Pieta IS, Garcya-Dieguez M, Herrera C, Larrubia MA, Alemany LJ (2010) J Catal 270:256

    Article  CAS  Google Scholar 

  6. Ivanova AS, Litvak GS, Mokrinskii VV, Plyasova LM, Zaikovskii VI, Kaichev VV, Noskov AS (2009) J Mol Catal A Chem 310:101

    Article  CAS  Google Scholar 

  7. Messerer A, Niessner R, Pöschl U (2006) Carbon 44:307

    Article  CAS  Google Scholar 

  8. Zhdanov VP, Carlsson P-A, Kasemo B (2008) Chem Phys Lett 454:341

    Article  CAS  Google Scholar 

  9. Kamp CJ, Andersson B (2009) Top Catal 52:1951

    Article  CAS  Google Scholar 

  10. Bensaid S, Marchisio DL, Fino D (2010) Chem Eng Sci 65:357

    Article  CAS  Google Scholar 

  11. Ström H, Sasic S, Andersson B (2012) Chem Eng Sci 69:231

    Article  Google Scholar 

  12. Darcy P, Da Costa P, Mellottee H, Trichard J-M, Djega-Mariadassou G (2007) Catal Today 119:252

    Article  CAS  Google Scholar 

  13. Ambrogio M, Saracco G, Specchia V (2001) Chem Eng Sci 56:1613

    Article  CAS  Google Scholar 

  14. Pavlova TL, Vernikovskaya NV, Chumakova NA, Noskov AS (2006) Combust Expl Shock Waves 42:396

    Article  Google Scholar 

  15. Schejbal M, Marek M, Kubicek M, Koci P (2009) Chem Eng J 154:219

    Article  CAS  Google Scholar 

  16. Konstandopoulos AG, Kostoglou M, Lorentzou S, Vlachos N (2012) Catal Today 188:2

    Article  CAS  Google Scholar 

  17. Park K, Kittelson DB, Zachariah MR, McMurry PH (2004) J Nanopart Res 6:267

    Article  CAS  Google Scholar 

  18. Zeng L, Weber AP (2012) Chem Ing Tech 84:295

    Article  CAS  Google Scholar 

  19. Gillespie DT (1977) J Phys Chem 81:2340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Competence Centre for Catalysis is hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies AB Volvo, Volvo Car Corporation, Scania CV AB, GM Powertrain Sweden AB, Haldor Topsøe A/S, and the Swedish Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Zhdanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdanov, V.P. Simulation of the catalytic oxidation of soot. Reac Kinet Mech Cat 108, 41–49 (2013). https://doi.org/10.1007/s11144-012-0501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0501-x

Keywords

Navigation