Skip to main content

Advertisement

Log in

Comparative Analysis of Phenomenological and Numerical Modeling of Experimentswith Single-Pass Free-Electron Lasers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We model the evolution of radiation harmonics in a single-pass free-electron laser using a phenomenological model, in which the main losses are taken into account separately for each of the harmonics. The modeling results are compared with the corresponding FEL experiments and the simulations, which we performed using the PERSEO code. A wide wavelength range (0.15–500 nm) is considered. The phenomenological description based on the use of several basic FEL parameters, such as the electron beam current, average energy, energy spread, and emittance of electrons, yields the results that correspond well to the LEUTL, SPARC, and LCLS experiments in various conditions. The evolution of the radiation power, bunching, and electron energy spread in the Spring 8 FEL at the follow-up stage is also considered. The necessity to improve electron beam parameters for generation of harmonics in this FEL is shown. The phenomenological model allows assessing the operation of the available and future FELs fast. Using it, one can model FELs with nearly any undulator with allowance for higher harmonics of their magnetic fields. Moreover, this model makes it possible to describe easily various effects in designed FELs, e.g., those with dephasing of electrons and photons, filtering of harmonics, and other features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Izv. Akad. Nauk SSSR, Ser. Fiz., 11, 1651 (1947).

    Google Scholar 

  2. H. Motz, W. Thon, and R.N. J. Whitehurst, Appl. Phys., 24, 826 (1953).

    Article  Google Scholar 

  3. B. W. J. McNeil and N.R.Thompson, Nature Photonics, 4, 814 (2010).

    Article  ADS  Google Scholar 

  4. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, 015006 (2016).

    Article  ADS  Google Scholar 

  5. Z. Huang and K. J. Kim, Phys. Rev. ST-AB, 10, 034801 (2007).

    ADS  Google Scholar 

  6. E. L. Saldin, E.A. Schneidmiller, and M.V.Yurkov, The Physics of Free Electron Lasers, Springer-Verlag, Berlin, Heidelberg (2000).

    Book  Google Scholar 

  7. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Comm., 50, 373 (1984).

    Article  ADS  Google Scholar 

  8. P. Schmüser, M. Dohlus, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and XRay Regime. Springer Tracts in Modern Physics, Vol. 258, Springer International Publishing, New York (2014).

    Google Scholar 

  9. C. Pellegrini, Phys. Scr., 2016, 014004 (2016).

    Article  Google Scholar 

  10. G. Margaritondo and P.R.Ribic, J. Synchrotron Rad., 18, 101 (2011).

    Article  Google Scholar 

  11. G. Margaritondo, Rivista del Nuovo Cimento, 40, No. 9, 411 (2017).

    Google Scholar 

  12. V. G. Bagrov, G. S.Bisnovaty-Kogan, V.A.Bordovitsyn, et al., Radiation Theory of Relativistic Particles [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

  13. G. Margaritondo, Synchrotron Radiation: Basics, Methods and Applications, Springer, Berlin, Heidelberg (2015).

    Google Scholar 

  14. F. Albertin, A. Astolfo, M. Stampanoni, et al., X-Ray Spectrometry, 44, No. 3, 93 (2015).

    Article  ADS  Google Scholar 

  15. M. Frank, D. B. Carlson, M. S. Hunter, et al., Intern. Union Crystallography J., 1, 95 (2014).

    Article  Google Scholar 

  16. H. Onuki and P. Elleaume, Undulators, Wigglers and their Applications, Taylor & Francis, New York (2003).

    Book  Google Scholar 

  17. USA Pat. WO 00/73823 A1, MKI G02B 5/08, MoRuBe Multilayers, byM.A.Wall and S.C.Bajt, filed 26.05.1999, publ.07.12.2000.

  18. USA Pat. EP 1198725, MKI G03F1/24, MoRuBe Multilayers, by S.C. Bajt and M. A. Wall, filed 17.05.2000, publ. 24.04.2002.

  19. N. M. Kroll and W. A.McMullin, Phys. Rev. A, 17, No. 1, 300 (1978).

    Article  ADS  Google Scholar 

  20. W. B. Colson, Nucl. Instrum. Meth. A, 393, 82 (1997).

    Article  ADS  Google Scholar 

  21. P. Sprangle and R.A. Smith, Phys. Rev. A, 21, No. 1, 293 (1980).

    Article  ADS  Google Scholar 

  22. R. Bonifacio, C. Pellegrini, and L.M.Narducci, Opt. Comm., 50, 373 (1984).

    Article  ADS  Google Scholar 

  23. K. J. Kim and M. Xie, Nucl. Instrum. A, 331, 359 (1993).

    Article  ADS  Google Scholar 

  24. L. Giannessi, in: Proc. 28th Intern. Conf. FEL 2006, Berlin, Germany, 27 August–1 September 2006, p. 91.

  25. L. Giannessi, Perseo, FEL-CAD Library, http://www.perseo.enea.it .

  26. M. Quattromini, M. Artioli, E. Di Palma, et al., Phys. Rev ST-AB, 15, 080704 (2012).

    ADS  Google Scholar 

  27. R.P.Walker, Nucl. Instrum. A, 335, 328 (1993).

    Article  ADS  Google Scholar 

  28. N. A. Vinokurov and E.B. Levichev, Phys. Usp., 58, 850 (2015).

    Article  ADS  Google Scholar 

  29. G. Dattoli, J. Appl. Phys., 84, No. 5, 2393 (1998).

    Article  ADS  Google Scholar 

  30. K. V. Zhukovsky, Moscow Univ. Phys., 73, No. 5, 462 (2018).

    Article  Google Scholar 

  31. K. V. Zhukovskii, Tech. Phys., 64, No. 3, 389 (2019).

    Article  Google Scholar 

  32. K. V. Zhukovsky and A. M. Kalitenko, Izv. Vyssh. Uchebn. Zaved., Fiz., 62, No. 2, 153 (2019).

    Google Scholar 

  33. K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad., 26, 605 (2019).

    Article  Google Scholar 

  34. A. V. Savilov and G. S. Nusinovich, Phys. Plasmas, 14, 053113 (2007).

    Article  ADS  Google Scholar 

  35. G. S. Nusinovich and O. Dumbrajs, Phys. Plasmas, 2, 568 (1995).

    Article  ADS  Google Scholar 

  36. A. V. Savilov and G. S. Nusinovich, Phys. Plasmas, 15, 013112 (2008).

    Article  ADS  Google Scholar 

  37. K. Zhukovsky and I. Potapov, Laser Part. Beams, 35, 326 (2017).

    Article  ADS  Google Scholar 

  38. K. Zhukovsky, Europhysics Lett., 119, 34002 (2017).

    Article  ADS  Google Scholar 

  39. K. V. Zhukovsky, Russian Phys. J., 60, No. 9, 1630 (2018).

    Article  ADS  Google Scholar 

  40. K. V. Zhukovsky, Russian Phys. J., 61, No. 2, 278 (2018).

    Article  ADS  Google Scholar 

  41. K. Zhukovsky, J. Phys. D, 50, 505601 (2017).

    Article  Google Scholar 

  42. K. Zhukovsky, Opt. Comm., 418, 57 (2018).

    Article  ADS  Google Scholar 

  43. K. Zhukovsky, J. Appl. Phys., 122, 233103 (2017).

    Article  ADS  Google Scholar 

  44. G. Dattoli, N. S. Mirian, E. di Palma, and V. Petrillo, Phys. Rev. ST-AB, 17, 050702 (2014).

    ADS  Google Scholar 

  45. G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys., 100, 084507 (2006).

    Article  ADS  Google Scholar 

  46. G. Dattoli and P. L. Ottaviani, Opt.Comm., 204, No. 1, 283 (2002).

    Article  ADS  Google Scholar 

  47. G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J. Appl. Phys., 97, 113102 (2005).

    Article  ADS  Google Scholar 

  48. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys., 95, 3206 (2004).

    Article  ADS  Google Scholar 

  49. L.-H.Yu, M. Babzien, I.Ben-Zvi, et al., Science, 289, 932 (2000).

    Article  ADS  Google Scholar 

  50. L.-H.Yu, Phys. Rev. A, 44, 5178 (1991).

    Article  ADS  Google Scholar 

  51. F. de Martini, in: Laser Handbook. V. 6, ed. by W. B. Colson, C. Pellegrini, A. Renieri, North-Holland, Amsterdam, 195 (1990).

  52. R. Bonifacio, L. de Salvo, P. Pierini, Nucl. Instrum. A, 293, 627 (1990).

    Article  ADS  Google Scholar 

  53. Z. Huang and K. -J.Kim, Phys. Rev. E, 62, 7295 (2000).

    Article  ADS  Google Scholar 

  54. E. L. Saldin, E.A. Schneidmiller, and M.V.Yurkov, Opt. Comm., 202, 169 (2002).

    Article  ADS  Google Scholar 

  55. T. Shaftan and L.-H.Yu, Phys. Rev. E, 71, 046501 (2005).

    Article  ADS  Google Scholar 

  56. H.-T. Li and Q.-K. Jia, Chinese Physics C, 37, No. 2, 028102 (2013).

    Article  ADS  Google Scholar 

  57. H.-X. Deng, and Z.-M. Dai, Chinese Physics C, 37, No. 10, 102001 (2013).

    Article  ADS  Google Scholar 

  58. H.-X. Deng and Z.-M. Dai, Chinese Physics C, 34, No. 8, 1140 (2010).

    Article  ADS  Google Scholar 

  59. Z. Ling, W. Qin, G. Zhao, et al., Chinese Physics C, 40, No. 9, 098102 (2016).

    Article  ADS  Google Scholar 

  60. T. Shintake, Nature Photonics, 2, 555 (2008).

    Article  Google Scholar 

  61. L.-H.Yu, L. F. Dimauro, W. Graves, and A. Doyuran, Phys. Rev. Lett., 91, 074801 (2003).

    Article  ADS  Google Scholar 

  62. B. McNeil, Nature Photonics, 2, 522 (2008).

    Article  ADS  Google Scholar 

  63. K. Tiedtke, A. Azima, N. von Bargen, et al., New J. Phys., 11, 023029 (2009).

    Article  ADS  Google Scholar 

  64. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. ST-AB, 15, 080702 (2012).

    ADS  Google Scholar 

  65. K. Zhukovsky, Nucl. Instrum. B, 369, 9 (2016).

    Article  ADS  Google Scholar 

  66. K. Zhukovsky, Opt. Comm., 353, 35 (2015).

    Article  ADS  Google Scholar 

  67. T. Tanaka and H. Kitamura, J. Synch. Rad., 8, 1221 (2001).

    Article  Google Scholar 

  68. T. Tanaka, Phys. Rev. ST-AB, 17, 060702 (2014).

    ADS  Google Scholar 

  69. L. Giannessi, D. Alesini, P. Antici, et al., Phys. Rev. ST-AB, 14, 060712 (2011).

    ADS  Google Scholar 

  70. D. Alesini, S. Bertolucci, M. Bellaveglia, et al., Physics Res. A, 528, 586 (2004).

    Google Scholar 

  71. S. V. Milton, E. Gluskin, N. D. Arnold, et al., Science, 292, 2037 (2001).

    Article  ADS  Google Scholar 

  72. P. Emma, R. Akre, J. Arthur, et al., Nature Photonics, 4, 641 (2010).

    Article  ADS  Google Scholar 

  73. S. Krinsky, Perturbation Expansion for High-Gain Free-Electron Laser Saturation, SLAC, Stanford (2003).

    Book  Google Scholar 

  74. D. Ratner, A. Brachmann, F. J. Decker, et al., Phys. Rev. ST-AB, 14, 060701 (2011).

    ADS  Google Scholar 

  75. S. Owada, K. Togawa, T. Inagaki, et al., J. Synchrotron Rad., 25, 282 (2018).

    Article  Google Scholar 

  76. K. Zhukovsky, J. Optics, 20, No. 9, 095003 (2018).

    Article  ADS  Google Scholar 

  77. K. V. Zhukovsky, Moscow Univ. Phys., 73, No. 4, 364 (2018).

    Article  Google Scholar 

  78. K. V. Zhukovsky, I. A. Potapov, and A.M.Kalitenko, Radiophys. Quantum Electron., 61, No. 3, 216 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovskiy.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 1, pp. 56–69, January 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovskiy, K.V., Kalitenko, A.M. Comparative Analysis of Phenomenological and Numerical Modeling of Experimentswith Single-Pass Free-Electron Lasers. Radiophys Quantum El 62, 52–64 (2019). https://doi.org/10.1007/s11141-019-09953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09953-2

Navigation