Skip to main content
Log in

Development of a High-Power Wideband Amplifier on the Basis of a Free-Electron Maser Having an Operating Frequency Near 30 GHz: Modeling and Results of the Initial Experiments

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We develop a high-power wideband amplifier based on a free-electron maser for particle acceleration, which will be operated in the 30 GHz frequency band, on the basis of the LIU-3000 linear induction accelerator forming an electron beam with an electron energy of 0.8 MeV, a current of 250 A, and a pulse duration of 200 ns. As the operating regime, we chose the regime of grazing of dispersion curves, since, according to the modeling performed, it allows one to ensure an instantaneous amplification band of about 5–7% in an undulator with regular winding for an output radiation power at a level of 20 MW and a gain of 30–35 dB. The results of the first experiments studying this FEM-based scheme are presented, in which the specified power level is achieved in the range around 30 GHz, and fast tuning of ±0.5 GHz in the band of variations in the frequency of the master magnetron is demonstrated. Modeling shows that the use of the non-resonance trapping/braking regime, which is realized in an undulator with profiled parameters, allows one to expect an increase in the radiation power of up to 35–40 MW with simultaneous widening of the amplification band up to 30% under the conditions of the LIU-3000 experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Yu. Peskov, N. S. Ginzburg, A. A.Kaminskii, et al., Tech. Phys. Lett., 25, No. 6, 429 (1999).

    Article  ADS  Google Scholar 

  2. A.K.Kaminsky, E.A. Perel’shtein, S. N. Sedykh, et al., Tech. Phys. Lett., 36, No. 3, 211 (2010).

    Article  ADS  Google Scholar 

  3. N. S.Ginzburg, I. I.Golubev, A. K. Kaminsky, et al., Phys. Rev. ST Accel. Beams, 14, 041002 (2011).

    Article  ADS  Google Scholar 

  4. V. G. Baev, V.A.Vdovin, A. A. Vikharev, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 648 (2012).

    Article  ADS  Google Scholar 

  5. I.V.Bandurkin, A. K. Kaminsky, E.A. Perelshteyn, et al., Radiophys. Quantum Electron., 58, No. 8, 607 (2016).

    Article  ADS  Google Scholar 

  6. A.V. Savilov, I.V. Bandurkin, and N.Yu. Peskov, Nuclear Instr. and Meth. Phys. Res. A, A507, Nos.1–2, 158 (2003).

    Article  ADS  Google Scholar 

  7. A. V. Savilov, Phys. Rev. E, 64, 066501 (2001).

    Article  ADS  Google Scholar 

  8. A. K. Kaminsky, A.A.Kaminsky, S.N. Sedykh, and A.P. Sergeev, Proc. 18th Int. FEL Conf. Rome, Italy, 26–31 August 1996, p. II109.

  9. A.A. Kaminsky, A.K.Kaminsky, and S.B.Rubin, Particle Accelerators, 33, 189 (1990).

    Google Scholar 

  10. M.E.Conde and G. Bekefi, Phys. Rev. Lett., 67, No. 22, 3082 (1991).

    Article  ADS  Google Scholar 

  11. N.Yu. Peskov, S. V. Samsonov, N. S.Ginzburg, and V. L.Bratmanm, Nuclear Instr. and Meth. Phys. Res. A, A407, Nos. 1–3, 107 (1998).

    Article  ADS  Google Scholar 

  12. N. S.Ginzburg and N.Yu. Peskov, Phys. Rev. ST. Accel. Beams, 16, 090701 (2013).

    Article  ADS  Google Scholar 

  13. N. S.Ginzburg, A. K. Kaminsky, N.Yu. Peskov, et al., IEEE Trans. Plasma Sci., 26, No. 3, 536 (1998).

    Article  ADS  Google Scholar 

  14. N. I. Zaitsev, Y. M. Guznov, Y.Y.Danilov, et al., Appl. Phys. Lett., 103, 173505 (2013).

    Article  ADS  Google Scholar 

  15. N. I. Zaitsev, A.K.Gvozdev, S. A. Zapevalov, et al., J. Commun. Tech. Electron., 59, No. 2, 164 (2014).

    Article  Google Scholar 

  16. C. G.Whyte, D. A. Jaroszynski, A. W.Cross, et al., Nuclear Instr. and Meth. in Phys. Res. A, A445, Nos. 1–3, 272 (2000).

    Article  ADS  Google Scholar 

  17. K. R.Chu, H. Y.Chen, C. L.Hung, et al., Phys. Rev. Lett., 81, 4760 (1998).

    Article  ADS  Google Scholar 

  18. G. S.Park, J. J.Choi, S. J.Park, et al., Phys. Rev. Lett., 74, 2399 (1995).

    Article  ADS  Google Scholar 

  19. D. E. Pershing, K.T.Nguyen, J.P. Calame, et al., IEEE Trans. Plasma Sci., PS-32, 947 (2004).

    Article  ADS  Google Scholar 

  20. V. L. Bratman, A. W.Cross, G. G. Denisov, et al., Phys. Rev. Lett., 84, 2746 (2000).

    Article  ADS  Google Scholar 

  21. V. L. Bratman, G. G. Denisov, S.V. Samsonov, et al., Radiophys. Quantum Electron., 50, No. 2, 95 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bandurkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 8–9, pp. 751–759, August–September 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Donets, D.E., Kaminsky, A.K. et al. Development of a High-Power Wideband Amplifier on the Basis of a Free-Electron Maser Having an Operating Frequency Near 30 GHz: Modeling and Results of the Initial Experiments. Radiophys Quantum El 59, 674–681 (2017). https://doi.org/10.1007/s11141-017-9734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9734-x

Navigation