Skip to main content
Log in

Use of Quasiregular Resonator Cavities with Short Phase Correctors in Gyrotrons Operated at Higher Cyclotron Harmonics

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We discuss the possibilities of using quasiregular resonator cavities with short irregularities, which ensure correction of the wave phase, in low-power gyrotrons operated at higher cyclotronfrequency harmonics. The use of such phase correctors can help with solving two problems, namely, increasing the selectivity of excitation of a higher cyclotron harmonic and decreasing the diffraction Q-factor of the gyrotron wave excited in an extended cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gaponov, M. I.Petelin, and V.K.Yulpatov, Radiophys. Quantum Electron., 10, 794 (1967).

    Article  ADS  Google Scholar 

  2. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, John Hopkins Univ. Press, Baltimore (2004).

    Google Scholar 

  3. W. H. Urbanus, W. A. Bongers, C. A. J. van der Geer, et al., Phys. Rev. E, 59, 6058 (1999).

    Article  ADS  Google Scholar 

  4. N. A. Vinokurov, J. IRMM THz Waves, 32, 1123 (2011).

    Google Scholar 

  5. G. N.Kulipanov, E.G.Bagryanskaya, E.N.Chesnokov, et al., IEEE Trans. Terahertz Science and Technology, 5, 798 (2015).

    Article  ADS  Google Scholar 

  6. V. L.Bratman, I.V.Bandurkin, B. S.Dumesh, et al., AIP Conf. Proc., 807, 356 (2006).

    Article  ADS  Google Scholar 

  7. T. Idehara, H.Tsuchiya, O.Watanabe, et al., Int. J. IRMM Waves, 27, 319 (2006).

    Article  ADS  Google Scholar 

  8. M. K.Hornstein, V. S.Bajaj, R.G.Griffin, and R. J.Temkin, IEEE Trans. Plasma Sci., 34, 524 (2006).

    Article  ADS  Google Scholar 

  9. M.Yu.Glyavin, A.G. Luchinin, and G.Yu.Golubiatnikov, Phys. Rev. Lett., 100, 015101 (2008).

    Article  ADS  Google Scholar 

  10. V. L. Bratman, Yu.K.Kalynov, and M. N. Manuilov, Phys. Rev. Lett., 102, 245101 (2009).

    Article  ADS  Google Scholar 

  11. V. L. Bratman, M.Yu.Glyavin, Yu.K.Kalynov, et al., J. IRMM THz Waves, 33, 371 (2011).

    Google Scholar 

  12. A.C.Torrezan, M. A. Shapiro, J.R. Sirigiri, et al., IEEE Trans. Electron Devices, 58, 2777 (2011).

    Article  ADS  Google Scholar 

  13. T. Idehara and S.P. Sabchevski, J. IRMM THz Waves, 33, No. 7, 667 (2012).

    Google Scholar 

  14. M.Yu.Glyavin, A.G. Luchinin, G. S.Nusinovich, et al., Appl. Phys. Lett., 101, 153503 (2012).

    Article  ADS  Google Scholar 

  15. S. Alberti, J.-Ph.Ansermet, K. A. Avramides, et al., Phys. Plasmas, 19, 123102 (2012).

    Article  ADS  Google Scholar 

  16. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, IEEE Trans. Electron Devices, 62, 2356 (2015).

    Article  ADS  Google Scholar 

  17. Yu.K.Kalynov, I.V.Osharin, and A. V. Savilov, Phys. Plasmas, 23, 053116 (2016).

    Article  ADS  Google Scholar 

  18. N. I. Zaitsev, N. A. Zavolsky, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 46, No. 10, 816 (2003).

    Article  ADS  Google Scholar 

  19. G. G. Denisov, V. L.Bratman, A.W.Cross, et al., Phys. Rev. Lett., 81, 5680 (1998).

    Article  ADS  Google Scholar 

  20. V. L. Bratman, A. W.Cross, G. G. Denisov, et al. Phys. Rev. Lett., 84, 2746 (2000).

    Article  ADS  Google Scholar 

  21. A. V. Savilov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, Phys. Rev. E, 62, 4207 (2000).

    Article  ADS  Google Scholar 

  22. I.V.Bandurkin, V. L.Bratman, A.V. Savilov, et al., Phys. Plasmas, 16, 070701 (2009).

    Article  ADS  Google Scholar 

  23. V. E. Zapevalov, S. A. Malygin, V. G. Pavel’ev, and Sh. E.Tsimring, Radiophys. Quantum Electron., 27, No. 9, 846 (1984).

    Article  ADS  Google Scholar 

  24. V. L. Bratman, T. Idehara, Yu.K.Kalynov, et al., J. Infrared Millim. Waves, 27, 1063 (2006).

    Article  ADS  Google Scholar 

  25. Y.Carmel, K.R.Chu, M.Read, et al., Phys. Rev. Lett., 50, 112 (1983).

    Article  ADS  Google Scholar 

  26. A. V. Savilov, Appl. Phys. Lett., 95, 073503 (2009).

    Article  ADS  Google Scholar 

  27. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, Phys. Plasmas, 7, 073101 (2010).

    Article  ADS  Google Scholar 

  28. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, Phys. Plasmas, 20, 014503 (2013).

    Article  ADS  Google Scholar 

  29. I.V.Bandurkin, Yu.K.Kalynov, I.V.Osharin, and A.V. Savilov, Phys. Plasmas., 23, 013313 (2016).

    Article  Google Scholar 

  30. N. S.Ginzburg, G. S.Nusinovich, and N.A. Zavolsky, Int. J. Electron., 61, 881 (1986).

    Article  Google Scholar 

  31. V. L. Bratman, M. I. Moiseev, M. I.Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, 474 (1973).

    Article  ADS  Google Scholar 

  32. V. L. Bratman, A. V. Savilov, and T.H.Chang, Radiophys. Quantum Electron., 58, No. 9, 660 (2015).

    Article  ADS  Google Scholar 

  33. I.V.Bandurkin and A.V. Savilov, Phys. Plasmas, 22, 063113 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bandurkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 8–9, pp. 729–742, August–September 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Glyavin, M.Y., Zavolsky, N.A. et al. Use of Quasiregular Resonator Cavities with Short Phase Correctors in Gyrotrons Operated at Higher Cyclotron Harmonics. Radiophys Quantum El 59, 655–666 (2017). https://doi.org/10.1007/s11141-017-9732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9732-z

Navigation