Skip to main content
Log in

Toeplitz determinants from compatibility conditions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper we show, how a straightforward and natural application of a pair of fundamental identities valid for polynomials orthogonal over the unit circle, can be used to calculate the determinant of the finite Toeplitz matrix Δ n , with the Fisher-Hartwig symbol. We use the same approach to compute a difference equation for expressions related to the determinants of symbols that have important application in the study of random permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Askey, R.A. (ed.): Gabor Szegö: Collected Papers, vol. I. Birkhäuser, Basel (1982)

    Google Scholar 

  2. Basor, E.L.: A localization theorem for Toeplitz determinant. Indiana University Math. J. 28, 975–983 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böttcher, A., Silberman, B.: Toeplitz matrices and determinants with Fisher-Hartwig symbols. J. Funct. Anal. 63, 178–214 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. Akademie-Verlag, Berlin (1989)

    Google Scholar 

  5. Böttcher, A., Widom, H.: Two elementary derivations of the pure Fisher-Hartwig determinant. math.FA/0312198 (2003)

  6. Chen, Y., Ismail, M.E.H.: Ladder operators and differential equations for orthogonal polynomials. J. Phys. A 30, 7818–7829 (1997)

    Google Scholar 

  7. Chen, Y., Ismail, M.E.H.: Jacobi polynomials from compatibility conditions. Proc. Am. Math. Soc. 133, 465–472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duduchava, R.V.: Discrete Wiener-Hopf equations that are composed of the Fourier coefficients of piecewise Wiener functions. Dokl. Akad. Nauk 207, 1273–1276 (1972)

    Google Scholar 

  9. Gessel, I.M.: Symmetric functions and P-recursiveness. J. Comput. Theor. Ser. A 53, 257–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geronimus, Y.L.: Theory of Orthogonal Polynomials (in Russian). Moscow (1958). English trans.: Polynomials Orthogonal on a Circle and Interval. Pergamon, Oxford (1960)

  11. Gross, D.J., Witten, E.: Possible third order phase transition in large-N lattice gauge theory. Phys. Rev. D 21, 446–453 (1980)

    Article  Google Scholar 

  12. Hasikado, M.: Unitary matrix models and Painléve III. Mod. Phys. Lett. A 11, 3001–3010 (1996)

    Article  Google Scholar 

  13. Ismail, M.E.H., Wimp, J.: On differential equations for orthogonal polynomials. Methods Appl. Anal. 5, 439–452 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Ismail, M.E.H., Witte, N.S.: Discriminants and functional equations for polynomials order on the unit circle. J. Approx. Theory 110, 200–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Its, A.R., Tracy, C.A., Widom, H.: Random words, Toeplitz determinants and integrable systems II. Physica D 152/153, 199–224 (2001)

    Article  MathSciNet  Google Scholar 

  16. Johansson, K.: The longest increasing subsequence in a random permutation and a unitary random matrix model. Math. Res. Lett. 5, 63–82 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Mehta, M.L.: Random Matrices. Academic Press, Boston (1991)

    MATH  Google Scholar 

  18. Periwal, V., Shevitz, D.: Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett. 64, 1326–1329 (1990)

    Article  Google Scholar 

  19. Szegö, G.: Orthogonal Polynomials, 4th edn. Am. Math. Soc., Providence (1975)

    MATH  Google Scholar 

  20. Tracy, C.A., Widom, H.: Random unitary matrices, permutations and Painlevé. Commun. Math. Phys. 207, 665–685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region. Phys. Rev. B 13, 316–374 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Additional information

E.L. Basor was supported in part by National Science Foundation grant DMS-0200167 and also in part by the EPSRC for a Visiting Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basor, E.L., Chen, Y. Toeplitz determinants from compatibility conditions. Ramanujan J 16, 25–40 (2008). https://doi.org/10.1007/s11139-007-9090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-007-9090-0

Keywords

Mathematics Subject Classification (2000)

Navigation