Skip to main content
Log in

Global Research Trends on the Utilization of Nopal (Opuntia Sp) Cladodes as a Functional Ingredient for Industrial Use

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Although nopal cladodes are a valuable bioactive compound source, they have historically been underused. This review draws a parallel between quantitative and qualitative data from the most outstanding scientific research concerning nopal cladodes in the last five years by implementing a bibliometric analysis. Italy, Mexico, Brazil, and Morocco accounted for approximately 55% of the 111 articles selected for this review. Nopal cladodes are a great source of nourishing ingredients such as mucilage, pectin, insoluble fibers, minerals, ascorbic acid, and bioactive compounds such as carotenoids (e.g., β-carotene, lutein, and cryptoxanthin), flavonoids (e.g., isorhamnetin, quercetin, rutin, and catechin), phytosterols (e.g., β-sitosterol and β-campesterol). Additionally, they offer technological benefits as a food ingredient, allied to good sensory acceptability. The findings suggest that medium-aged cladodes (20 days) have the highest concentration of soluble fiber, protein, and bioactive compounds, rendering them the optimal maturity stage for consumption and processing. Therefore, nopal cladodes can be exploited for several industries, including biotechnology, cosmetics, and pharmaceuticals, and they have attracted attention as a promising ingredient for the food industry in the concept of the next generation of innovative and functional vegetable foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Feugang JM (2006) Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Front Biosci 11(3):2574–2589. https://doi.org/10.2741/1992

    Article  CAS  PubMed  Google Scholar 

  2. Betatache H, Aouabed A, Drouiche N, Lounici H (2014) Conditioning of sewage sludge by prickly pear cactus (Opuntia ficus indica) juice. Ecol Eng 70:465–469. https://doi.org/10.1016/j.ecoleng.2014.06.031

    Article  Google Scholar 

  3. Saravanakumar A, Ganesh M, Peng MM et al (2015) Comparative antioxidant and antimycobacterial activities of Opuntia ficus-indica fruit extracts from summer and rainy seasons. Front Life Sci 8(2):182–191. https://doi.org/10.1080/21553769.2015.1028655

    Article  CAS  Google Scholar 

  4. Ciriminna R, Chavarría-Hernández N, Rodríguez‐Hernández AI, et al (2019) Toward unfolding the bioeconomy of nopal (Opuntia spp.). biofuels. Bioprod Biorefining 13(6):1417–1427. https://doi.org/10.1002/bbb.2018

    Article  CAS  Google Scholar 

  5. De Farias PM, de Vasconcelos LB, Ferreira MES et al (2021) Nopal cladode (Opuntia ficus-indica) flour: production, characterization, and evaluation for producing bioactive film. Food Packag Shelf Life 29:100703. https://doi.org/10.1016/j.fpsl.2021.100703

    Article  CAS  Google Scholar 

  6. Hernández-Becerra E, de los Angeles Aguilera-Barreiro M, Contreras-Padilla M et al (2022) Nopal cladodes (Opuntia ficus indica): nutritional properties and functional potential. J Funct Foods 95:105183. https://doi.org/10.1016/j.jff.2022.105183

    Article  CAS  Google Scholar 

  7. Missaoui M, D’Antuono I, D’Imperio M et al (2020) Characterization of micronutrients, bioaccessibility and antioxidant activity of prickly pear cladodes as functional ingredient. Molecules 25(9):2176. https://doi.org/10.3390/molecules25092176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marin-Bustamante MQ, Chanona-Pérez JJ, Güemes-Vera N et al (2017) Production and characterization of cellulose nanoparticles from nopal waste by means of high impact milling. Procedia Eng 200:428–433. https://doi.org/10.1016/j.proeng.2017.07.060

    Article  CAS  Google Scholar 

  9. Marin-Bustamante MQ, Chanona-Pérez JJ, Gυemes-Vera N et al (2018) Evaluation of physical, chemical, microstructural and micromechanical properties of nopal spines (Opuntia ficus-indica). Ind Crops Prod 123:707–718. https://doi.org/10.1016/j.indcrop.2018.07.030

    Article  CAS  Google Scholar 

  10. Derabli B, Nancib A, Nancib N et al (2022) Opuntia ficus indica waste as a cost-effective carbon source for lactic acid production by Lactobacillus plantarum. Food Chem 370:131005. https://doi.org/10.1016/j.foodchem.2021.131005

    Article  CAS  PubMed  Google Scholar 

  11. Sottile F, Modica A, Rosselli S et al (2021) Hand-made paper obtained by green procedure of cladode waste of Opuntia ficus indica (L.) Mill. from Sicily. Nat Prod Res 35(3):359–368. https://doi.org/10.1080/14786419.2019.1631820

    Article  CAS  PubMed  Google Scholar 

  12. Procacci S, Bojórquez-Quintal E, Platamone G et al (2021) Opuntia ficus-indica pruning waste recycling: recovery and characterization of mucilage from cladodes. Nat Resour 12(4):91–107. https://doi.org/10.4236/nr.2021.124008

    Article  CAS  Google Scholar 

  13. Gama MAS, de Paula TA, Véras ASC et al (2021) Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans ‐11 18:1, cis ‐9, trans ‐11 CLA and 18:2 n‐6 contents in cow milk. J Anim Physiol Anim Nutr (Berl) 105(2):232–246. https://doi.org/10.1111/jpn.13466

    Article  CAS  PubMed  Google Scholar 

  14. Nefzaoui A, Salem HB (2002) Forage, fodder, and animal nutrition. Forage, fodder, and animal nutrition. In: P. S. Nobel (Ed.) Cacti: Biology and uses, pp. 199–210

  15. Andreu L, Nuncio-Jáuregui N, Carbonell-Barrachina ÁA et al (2018) Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J Sci Food Agric 98(4):1566–1573. https://doi.org/10.1002/jsfa.8628

    Article  CAS  PubMed  Google Scholar 

  16. Otálora MC, Wilches-Torres A, Gómez Castaño JA (2021) Extraction and physicochemical characterization of dried powder mucilage from Opuntia ficus-indica cladodes and aloe vera leaves: a comparative study. Polym (Basel) 13(11):1689. https://doi.org/10.3390/polym13111689

    Article  CAS  Google Scholar 

  17. Marques de Farias P, Barros de Vasconcelos L, da Silva Ferreira ME et al (2021) Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: a comparison with lignin and propolis extract. Int J Biol Macromol 183:614–626. https://doi.org/10.1016/j.ijbiomac.2021.04.143

    Article  CAS  PubMed  Google Scholar 

  18. González CM, García AL, Llorca E et al (2021) Carotenoids in dehydrated persimmon: antioxidant activity, structure, and photoluminescence. LWT-Food Sci Technol 142:111007. https://doi.org/10.1016/j.lwt.2021.111007

    Article  CAS  Google Scholar 

  19. Luna-Sosa B, Martínez-Ávila GCG, Rodríguez-Fuentes H et al (2020) Pectin-based films loaded with hydroponic nopal mucilages: development and physicochemical characterization. Coatings 10(5):467. https://doi.org/10.3390/COATINGS10050467

    Article  CAS  Google Scholar 

  20. Scognamiglio FS, Gattia DM, Roselli G et al (2020) Thermoplastic starch (TPS) films added with mucilage from Opuntia ficus indica: mechanical, microstructural and thermal characterization. Mater (Basel) 13(4):1000. https://doi.org/10.3390/ma13041000

    Article  CAS  Google Scholar 

  21. De Farias PM, De Vasconcelos LB, Ferreira ME et al (2023) Use of chemically treated nopal cladodes as additive in the cassava starch composite films. J Vinyl Add Tech. https://doi.org/10.1002/vnl.22040

    Article  Google Scholar 

  22. Matheus JRV, de Farias PM, Satoriva JM et al (2023) Cassava starch films for food packaging: trends over the last decade and future research. Int J Biol Macromol 225:658–672. https://doi.org/10.1016/j.ijbiomac.2022.11.129

    Article  CAS  PubMed  Google Scholar 

  23. Koseoglu MA, Rahimi R, Okumus F, Liu J (2016) Bibliometric studies in tourism. Ann Tour Res 61:180–198. https://doi.org/10.1016/j.annals.2016.10.006

    Article  Google Scholar 

  24. Chahdoura H, Chaouch MA, Chouchéne W et al (2018) Incorporation of Opuntia macrorhiza Engelm. In cake-making: physical and sensory characteristics. LWT-Food Sci Technol 90:15–21. https://doi.org/10.1016/j.lwt.2017.12.001

    Article  CAS  Google Scholar 

  25. Dick M, Limberger C, Cruz Silveira Thys R et al (2020) Mucilage and cladode flour from cactus (Opuntia monacantha) as alternative ingredients in gluten-free crackers. Food Chem 314:126178. https://doi.org/10.1016/j.foodchem.2020.126178

    Article  CAS  PubMed  Google Scholar 

  26. Nabil B, Ouaabou R, Ouhammou M et al (2020) Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder (Opuntia ficus-indica). J Food Sci Technol 57:943–954. https://doi.org/10.1007/s13197-019-04127-4

    Article  CAS  PubMed  Google Scholar 

  27. de la Cruz LLC, García-Mateos R, Ybarra-Moncada MC, Corrales-García J (2021) Sweetened nopal flakes: a functional snack. J Appl Bot Food Qual 94. https://doi.org/10.5073/JABFQ.2021.094.020

  28. Otálora MC, Gómez Castaño JA, Wilches-Torres A (2019) Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica. LWT-Food Sci Technol 112:108234. https://doi.org/10.1016/j.lwt.2019.06.001

    Article  CAS  Google Scholar 

  29. Carmona JC, Robert P, Vergara C, Sáenz C (2021) Microparticles of yellow-orange cactus pear pulp (Opuntia ficus-indica) with cladode mucilage and maltodextrin as a food coloring in yogurt. LWT-Food Sci Technol 138:110672. https://doi.org/10.1016/j.lwt.2020.110672

    Article  CAS  Google Scholar 

  30. Bayar N, Friji M, Kammoun R (2018) Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chem 241:127–134. https://doi.org/10.1016/j.foodchem.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  31. Dick M, Dal Magro L, Rodrigues RC et al (2019) Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: physicochemical and functional performance. Int J Biol Macromol 123:900–909. https://doi.org/10.1016/j.ijbiomac.2018.11.126

    Article  CAS  PubMed  Google Scholar 

  32. Adjeroud-Abdellatif N, Hammoui Y, Boudria A et al (2022) Effect of a natural coagulant extract from Opuntia ficus-indica cladode on electrocoagulation-electroflotation water treatment process. Int J Environ Anal Chem 102(17):5822–5846. https://doi.org/10.1080/03067319.2020.1804889

    Article  CAS  Google Scholar 

  33. Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R (2018) Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects. Biochem Eng J 133:219–239. https://doi.org/10.1016/j.bej.2018.03.003

    Article  CAS  Google Scholar 

  34. Quines-Lagmay VC, Jeong B-G, Kerr WL et al (2020) Antioxidative properties of eastern prickly pear (Opuntia humifusa) fermented with lactic acid bacteria and cell wall-hydrolyzing enzymes. LWT-Food Sci Technol 122:109029. https://doi.org/10.1016/j.lwt.2020.109029

    Article  CAS  Google Scholar 

  35. da Cruz Filho IJ, da Silva Barros BR, de Souza Aguiar LM et al (2019) Lignins isolated from prickly pear cladodes of the species Opuntia ficus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. Int J Biol Macromol 123:1331–1339. https://doi.org/10.1016/j.ijbiomac.2018.09.120

    Article  CAS  PubMed  Google Scholar 

  36. Chaloulos P, Bazanis AE, Georgiadou M et al (2021) Effect of drying and grinding or micro-grinding process on physical and rheological properties of whole cladode (Opuntia ficus-indica) flour. LWT-Food Sci Technol 151:112171. https://doi.org/10.1016/j.lwt.2021.112171

    Article  CAS  Google Scholar 

  37. Angulo-Bejarano PI, Sharma A, Paredes-López O (2019) Factors affecting genetic transformation by particle bombardment of the prickly pear cactus (O. ficus-indica). 3 Biotech 9:98. https://doi.org/10.1007/s13205-019-1627-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Figueroa-Pérez MG, Pérez-Ramírez IF, Paredes-López O et al (2018) Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of Maturity. Int J Food Prop 21:1728–1742. https://doi.org/10.1080/10942912.2016.1206126

    Article  CAS  Google Scholar 

  39. De Santiago E, Domínguez-Fernández M, Cid C, De Peña MP (2018) Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chem 240:1055–1062. https://doi.org/10.1016/j.foodchem.2017.08.039

    Article  CAS  PubMed  Google Scholar 

  40. Chaouch MA, Hammi KM, Dhahri M et al (2018) Access to new anticoagulant by sulfation of pectin-like polysaccharides isolated from Opuntia ficus indica cladodes. Int J Biol Macromol 120(part B) 1794–1800. https://doi.org/10.1016/j.ijbiomac.2018.09.130

  41. Betancourt-Domínguez MA, Hernádez-Pérez T, García-Saucedo P et al (2006) Physico-chemical changes in cladodes (nopalitos) from cultivated and wild cacti (Opuntia spp). Plant Foods Hum Nutr 61:115–119. https://doi.org/10.1007/s11130-006-0008-6

    Article  CAS  PubMed  Google Scholar 

  42. García-Valderrama EJ, Mamidi N, Antunes-Ricardo M et al (2022) Engineering and evaluation of Forcespun gelatin nanofibers as an isorhamnetin glycosides delivery system. Pharmaceutics 14(6):1116. https://doi.org/10.3390/pharmaceutics14061116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cruz-Rubio JM, Mueller M, Loeppert R et al (2020) The effect of cladode drying techniques on the prebiotic potential and molecular characteristics of the mucilage extracted from Opuntia ficus-indica and Opuntia joconostle. Sci Pharm 88(4):43. https://doi.org/10.3390/scipharm88040043

    Article  CAS  Google Scholar 

  44. Rodriguez-Felix A, Cantwell M (1988) Developmental changes in composition and quality of prickly pear cactus cladodes (nopalitos). Plant Foods Hum Nutr 38:83–93. https://doi.org/10.1007/BF01092314

    Article  CAS  PubMed  Google Scholar 

  45. Zhang R, Han Y, McClements DJ et al (2022) Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: a review. J Agric Food Chem 70(8):2483–2494. https://doi.org/10.1021/acs.jafc.1c07390

    Article  CAS  PubMed  Google Scholar 

  46. Nuñez-López MA, Paredes-López O, Reynoso-Camacho R (2013) Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. J Agric Food Chem 61(46):10981–10986. https://doi.org/10.1021/jf403834x

    Article  CAS  PubMed  Google Scholar 

  47. Angulo-Bejarano PI, Paredes-López O (2012) Nopal: a perspective view on its nutraceutical potential. InHispanic foods: chemistry and bioactive compounds. Am Chem Soc. https://doi.org/10.1021/bk-2012-1109.ch009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff and facilities of the Rio de Janeiro State University (UERJ), Federal University of Rio de Janeiro State (UNIRIO), São Paulo University (USP-RP) and Federal University of Ceará (UFC).

Funding

This research work was funded and supported by the Research Support Foundation of the State of Rio de Janeiro (FAPERJ) (code E-26/010/002738/2019; code E-26/211.985/2021; code E-26/201.428/2022) and by the National Council for Scientific and Technological (CNPq – Brazil, code 001) through scholarship funding.

Author information

Authors and Affiliations

Authors

Contributions

P. M. F.: Conceptualization, Methodology, Validation, Investigation, Data curation, Gathered and Interpreted background literature, Writing - review & editing, Visualization. J. R. V. M.: Methodology, Data analysis, Writing the manuscript-original draft, Validation. (A) E. C. F.: Validation, Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition. L. (B) V.: Visualization, Validation. D. R. TB.: Validation, Writing - review & editing, Project administration, Supervision.

Corresponding author

Correspondence to Ana Elizabeth Cavalcante Fai.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Farias, P.M., Matheus, J.R.V., Fai, A.E.C. et al. Global Research Trends on the Utilization of Nopal (Opuntia Sp) Cladodes as a Functional Ingredient for Industrial Use. Plant Foods Hum Nutr 78, 621–629 (2023). https://doi.org/10.1007/s11130-023-01113-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01113-2

Keywords

Navigation