Skip to main content
Log in

Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6–83.5%, 74.1–77.6% and 79.8–80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8–49.8%, 41.3–42.3% and 43.7–44.4% assayed in traditional tortillas, respectively. Approximately 72.5–88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ABAP:

2,2′-azobis (2-amidinopropane) dihydrochloride

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

AOX:

Chemical antioxidant activity

DCFH-DA:

2′,7′-dichlorofluorescin diacetate

GAE:

Gallic Acid equivalents

HBSS:

Hanks´ balanced salt solution

HEPG2:

Liver cancer cell lines

HPLC:

High performance liquid chromatography

ORAC:

Oxygen radical absorbance capacity

PBS:

Phosphate-buffered saline

References

  1. Pineda-Hidalgo KV, Méndez-Marroquín KP, Vega-Alvarez E, Chávez-Ontiveros J, Sánchez-Peña P, Garzón-Tiznado JA, Vega-García MO, López-Valenzuela JA (2013) Microsatellite-based genetic diversity among accessions of maize landraces from Sinaloa in México. Hereditas 150:53–59

    Article  Google Scholar 

  2. López-Martínez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Sci Technol 42:1187–1192

    Google Scholar 

  3. Corrales-Bañuelos AB, Cuevas-Rodríguez EO, Gutiérrez-Uribe JA, Milán-Noris EM, Reyes-Moreno C, Milán-Carrillo J, Mora-Rochín S (2016) Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process. J Cereal Sci 69:64–70

    Article  Google Scholar 

  4. López-Martínez LX, Parkin KL, García HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66:41–47

    Article  Google Scholar 

  5. Mendoza-Díaz S, Ortiz-Valerio MC, Castaño-Tostado E, Figueroa-Cárdenas JD, Reynoso-Camacho R, Ramos-Gómez M, Loarca-Piña G (2012) Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.) Plant Foods Hum Nutr 67:442–449

    Article  Google Scholar 

  6. Snack Food Association (2015). State of the industry report: snack world; Arlington, VA, USA, pp 20–21

  7. Cuevas-Rodriguez EO, Reyes-Moreno C, Eckhoff SR, Milán-Carrillo J (2009) Nixtamalized instant flour from corn (Zea mays L.) meal: optimization of nixtamalization conditions. Cereal Chem 328:7–11

    Article  Google Scholar 

  8. Milán-Carrillo J, Gutiérrez-Dorado R, Perales-Sánchez JX, Cuevas-Rodríguez EO, Ramírez-Wong B, Reyes-Moreno C (2006) The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. Int J Food Sci Technol 41:727–736

    Article  Google Scholar 

  9. Serna-Saldivar SO (2010) Cereal grains: properties, processing and nutritional attributes. CRC Press (Taylor & Francis Group), Boca Raton

    Google Scholar 

  10. De la Parra C, Serna Saldívar SO, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183

    Article  Google Scholar 

  11. Mora-Rochin S, Gutiérrez-Uribe JA, Serna-Saldivar SO, Sánchez-Peña P, Reyes-Moreno C, Milán-Carrillo J (2010) Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J Cereal Sci 52:502–508

    Article  CAS  Google Scholar 

  12. Aguayo-Rojas J, Mora-Rochín S, Cuevas-Rodríguez EO, Serna-Saldivar SO, Gutierrez-Uribe JA, Reyes-Moreno C, Milán-Carrillo J (2012) Phytochemicals and antioxidant capacity of tortillas obtained after lime-cooking extrusion process of whole pigmented Mexican maize. Plant Foods Hum Nutr 67:178–185

    Article  CAS  Google Scholar 

  13. López-Alarcón C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 763:1–10

    Article  Google Scholar 

  14. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907

    Article  CAS  Google Scholar 

  15. Zhu Y, Li T, Fu X, Abbasi AM, Zheng BS, Liu RH (2015) Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.) J Funct Foods 19:439–450

    Article  CAS  Google Scholar 

  16. Liu L, Guo J, Zhang R, Wei Z, Deng Y, Guo J, Zhang M (2015) Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chem 185:318–325

    Article  CAS  Google Scholar 

  17. Milán-Carrillo J, Gutiérrez-Dorado R, Cuevas-Rodríguez EO, Garzón-Tiznado JA, Reyes-Moreno C (2004) Nixtamalized flour from quality protein maize (Zea mays L). Optimization of alkaline processing. Plant Foods Hum Nutr 59:35–44

    Article  Google Scholar 

  18. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187

    Article  CAS  Google Scholar 

  19. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  21. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4926

    Article  CAS  Google Scholar 

  22. Felice DL, Sun J, Liu RH (2009) A modified methylene blue assay for accurate cell counting. J Funct Foods 1:109–118

    Article  Google Scholar 

  23. Wolfe KL, Liu RH (2008) Structure-activity relationships flavonoids in cellular antioxidant activity assay. J Agric Food Chem 56:8404–8411

    Article  CAS  Google Scholar 

  24. González-Muñoz A, Quesille-Villalobos AM, Fuentealba C, Shetty K, Gálvez-Ranilla L (2013) Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J Agric Food Chem 61:10995–11007

    Article  Google Scholar 

  25. Salinas-Moreno Y, Pérez-Alonso JJ, Vázquez-Carrillo G, Aragón-Cuevas F, Velázquez-Cardelas GA (2012) Anthocyanins and antioxidant activity in maize grains (Zea mays L.) of chalqueño, elotes cónicos and bolita races. Agrociencia 46:693–706

    Google Scholar 

  26. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768–1774

    Article  CAS  Google Scholar 

  27. Chandrasekara A, Shahidi F (2012) Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J Funct Foods 4:226–237

    Article  CAS  Google Scholar 

  28. Zhang L, Liu R, Niu W (2014) Phytochemical and antiproliferative activity of proso millet. PLoS One 9(8):e104058

    Article  Google Scholar 

  29. Kremer-Faller AL, Fialho E, Liu RH (2012) Cellular antioxidant activity of feijoada whole meal coupled with an in vitro digestion. J Agric Food Chem 60:4826–4832

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Universidad Autónoma de Sinaloa (Project PROPAPI-UAS 2015) and Fondo CONACyT (Project 168279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Milán-Carrillo.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaxiola-Cuevas, N., Mora-Rochín, S., Cuevas-Rodriguez, E.O. et al. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking. Plant Foods Hum Nutr 72, 314–320 (2017). https://doi.org/10.1007/s11130-017-0624-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-017-0624-3

Keywords

Navigation