Skip to main content
Log in

Thermal Stability of Selected Natural Red Extracts Used as Food Colorants

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The color degradation of aqueous solutions of six natural red pigment extracts (elderberry, red cabbage, hibiscus, red beet, Opuntia fruits and red cochineal) used commercially as food colorants was investigated at temperatures between 50 and 90 °C. Color degradation was studied in respect to both spectral properties and visual color. The remaining absorbance at 535 nm as a function of the incubation time and temperature was used to quantify the degradation process. Red cochineal was the most thermoresistant extract with a remaining absorbance of 95 % after 6 h at 90 °C. Anthocyanin extracts (elderberry, red cabbage, hibiscus) showed remaining absorbance percentages of 63.8, 46.1 and 26.7, respectively. Betacyanin extracts (red beet, Opuntia fruits) were the most thermosensitive maintaining only 12.5 and 1.7 %, respectively, of the initial absorbance at 535 nm. Applying a first-order kinetic model to the degradation processes, reaction rate constants (k) and half-life periods (t 1/2 ) were calculated. The temperature dependence of the degradation rate constant obeyed the Arrhenius relationship, with activation energies (E a ) ranging between 3.02 and 53.37 kJ mol−1. The higher activation energy values indicated greater temperature sensitivity. Changes in visual color attributes corroborated the high thermal stability of the red cochineal extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

λmax :

Wavelength of maximum absorption

k:

Reaction rate constant

t 1/2 :

Half-life period

Ea :

Activation energy

ΔE*:

Total color difference

References

  1. Hutchings J (2006) Talking about color and ethics. Color Res Applic 31:87–89

    Article  Google Scholar 

  2. Downham A, Collins P (2000) Colouring our foods in the last and the next millennium. Int J Food Sci Technol 35:5–22

    Article  CAS  Google Scholar 

  3. Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54:7027–7035

    Article  CAS  Google Scholar 

  4. Delgado-Vargas F, Jiménez-Aparicio A, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins and betalains. Characteristics, biosynthesis, processing and stability. CRC Crit Rev Food Sci Nutr 40:173–289

    Article  CAS  Google Scholar 

  5. Malien-Aubert C, Amiot-Carlin MJ (2006) Pigments phénoliques: structures, stabilité, marche des colorants naturels et effets sur la santé. In: Les Polyphénols en Agroalimentaire, Lavoisier Tec & Doc, Paris, pp 295–339

  6. Cisse M, Vaillant F, Acosta O, Dhuique-Mayer C, Dornier M (2009) Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, Eyring, and Ball models. J Agric Food Chem 57:6285–6291

    Article  CAS  Google Scholar 

  7. Moreno D, García-Viguera C, Gil JI, Gil-Izquierdo A (2008) Betalains in the era of global agri-food science; technology and nutritional health. Phytochem Rev 7:261–280

    Article  CAS  Google Scholar 

  8. Von Elbe JH, Goldman IL (2000) The betalains. In: Lauro GJ, Francis FJ (eds) Natural food colorants, science and technology. IFT, Chicago, pp 11–30

    Google Scholar 

  9. Schul J (2000) Carmine. In: Lauro GJ, Francis FJ (eds) Natural food colorants, science and technology. IFT, Chicago, pp 1–10

    Google Scholar 

  10. Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491

    Article  CAS  Google Scholar 

  11. Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 4:859–871

    Article  Google Scholar 

  12. Beattie J, Crozier A, Duthie GG (2005) Potential health benefits of berries. Curr Nutr Food Sci 1:71–86

    Article  CAS  Google Scholar 

  13. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum Nutr 65:299–308

    Article  Google Scholar 

  14. Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38

    Article  CAS  Google Scholar 

  15. Fernández-López JA, Almela L, Obón JM, Castellar R (2010) Determination of antioxidant constituents in cactus pear fruits. Plant Foods Hum Nutr 65:253–259

    Article  Google Scholar 

  16. Castellar MR, Obón JM, Fernández-López JA (2006) The isolation and properties of a concentrated red-purple betacyanin food colourant from Opuntia stricta fruits. J Sci Food Agric 86:122–128

    Article  CAS  Google Scholar 

  17. Van den Broeck I, Ludikhuyze L, Weemaes C, Loey AV, Hendrickx M (1998) Kinetics for isobaric-isothermal degradation of L-ascorbic acid. J Agric Food Chem 46:2001–2006

    Article  Google Scholar 

  18. Hunt RWG (1987) Measuring colour. New York: John Wiley & Sons

  19. Sadilova E, Carle R, Stintzing FC (2007) Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol Nutr Food Res 51:1461–1471

    Article  CAS  Google Scholar 

  20. Herbach KM, Stintzing FC, Carle R (2004) Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] monitored by high-performance liquid chromatography-tandem mass spectrometric analysis. Eur Food Res Technol 219:377–385

    Article  CAS  Google Scholar 

  21. Rodríguez-Muñoz E, Herrera-Ruiz G, Pedraza-Aboytes G, Loarca-Piña G (2009) Antioxidant capacity and antimutagenic activity of natural oleoresin from greenhouse grown tomatoes (Lycopersicon esculentum). Plant Foods Hum Nutr 64:46–51

    Article  Google Scholar 

  22. Patras A, Brunton NP, O’Donnell C, Tiwari BK (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11

    Article  CAS  Google Scholar 

  23. Yang Z, Han Y, Gu Z, Fan G, Chen Z (2008) Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn (Zea mays L.) cob. Inn Food Sci Emerg Technol 9:341–347

    Article  CAS  Google Scholar 

  24. Ibarz A, Pagán J, Garza S (2000) Kinetic models of non-enzymatic browning in apple puree. J Sci Food Agric 80:1162–1168

    Article  CAS  Google Scholar 

  25. Suh HJ, Noh DO, Kang CS, Kim JM, Lee SW (2003) Thermal kinetics of color degradation of mulberry fruit extract. Nahrung 47:132–135

    Article  Google Scholar 

  26. Pedreño MA, Escribano J (2001) Correlation between antiradical activity and stability of betanine from Beta vulgaris L roots under different pH, temperature and light conditions. J Sci Food Agric 81:627–631

    Article  Google Scholar 

  27. Merin U, Gagel S, Popel G, Bernstein S, Rosenthal I (1987) Thermal degradation kinetics of prickly-pear-fruit red pigment. J Food Sci 52:485–486

    Article  CAS  Google Scholar 

  28. Reyes LF, Cisneros-Zevallos L (2007) Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chem 100:885–894

    Article  CAS  Google Scholar 

  29. Gradinaru G, Biliaderis CG, Kallithraka S, Kefalas P, Garcia-Viguera C (2003) Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: effects of copigmentation and glass transition. Food Chem 83:423–436

    Article  CAS  Google Scholar 

  30. Stintzing FC, Carle R (2007) Betalains—emerging prospects for food scientists. Trends Food Sci Technol 18:514–525

    Article  CAS  Google Scholar 

  31. Herbach KM, Stintzing FC, Carle R (2006) Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J Food Sci 69:C491–C498

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Fernández-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-López, J.A., Angosto, J.M., Giménez, P.J. et al. Thermal Stability of Selected Natural Red Extracts Used as Food Colorants. Plant Foods Hum Nutr 68, 11–17 (2013). https://doi.org/10.1007/s11130-013-0337-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0337-1

Keywords

Navigation