Skip to main content
Log in

Linear optical deterministic and reconfigurable SWAP gate

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a deterministic SWAP gate for dual-rail-encoded single photon qubits. The gate is constructed from waveguide crossings, Mach–Zehnder interferometers and phase shifters which provide the gate reconfigurability. Through manipulating the phase of the phase shifters, we can apply either the SWAP or identity gates. As an essential element of nearest neighbor qubit networks, the SWAP gate has a simple structure and presents minimal overhead. Providing an efficient solution to the geometric restrictions of on-chip dual-rail qubit circuits, our design may be utilized in applying large scale arbitrary unitary transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang I.: Quantum Computation and Quantum Information, Cambridge University Press (2012)

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011). (review Article)

    Article  ADS  Google Scholar 

  4. O’Brien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009). (review Article)

  5. Politi, A., Matthews, J.C.F., O’Brien, J.L.: Shor’s quantum factoring algorithm on a photonic chip. Science 325(5945), 1221 (2009)

  6. Matthews, J.C.F., Politi, A., Stefanov, A., O’Brien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009)

  7. Silverstone, J.W., Bonneau, D., O’Brien, J.L., Thompson, M.G.: Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016)

  8. Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N.J., Silverstone, J.W., Shadbolt, P.J., Matsuda, N., Oguma, M., et al.: Universal linear optics. Science 349(6249), 711–716 (2015)

    Article  MathSciNet  Google Scholar 

  9. Thompson, D.B., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., et al.: Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14(4), 45003 (2012)

    Article  Google Scholar 

  10. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010)

  11. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.L.: Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf. Comput. 4, 237–251 (2004)

  12. Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum fourier transform on a linear nearest neighbor architecture. Quantum Inf. Comput. 7(4), 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Fowler, A.G., Hill, C.D., Hollenberg, L.C.L.: Quantum-error correction on linear-nearest-neighbor qubit arrays. Phys. Rev. A 69, 042314 (2004)

    Article  ADS  Google Scholar 

  14. Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  15. Zajac, D.M., Sigillito, A.J., Russ, M., Borjans, F., Taylor, J.M., Burkard, G., Petta, J.R.: Resonantly driven CNOT gate for electron spins. Science 359(6374), 439–442 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Plantenberg, J.H., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836 (2007)

    Article  ADS  Google Scholar 

  17. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  18. Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65(6), 062324 (2002)

    Article  ADS  Google Scholar 

  19. Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)

  20. Fiorentino, M., Kim, T., Wong, F.N.C.: Single-photon two-qubit swap gate for entanglement manipulation. Phys. Rev. A 72, 012318 (2005)

    Article  ADS  Google Scholar 

  21. Černoch, A., Soubusta, J., Bartůšková, L., Dušek, M., Fiurášek, J.: Experimental realization of linear-optical partial swap gates. Phys. Rev. Lett. 100, 180501 (2008)

  22. Zhu, M.-Z., Ye, L.: Implementation of swap gate and Fredkin gate using linear optical elements. Int. J. Quantum Inf. 11(03), 1350031 (2013)

    Article  MathSciNet  Google Scholar 

  23. Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12(9), 534–539 (2018)

  24. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  25. Clements, W.R., Humphreys, P.C., Metcalf, B.J., Kolthammer, W.S., Walmsley, I.A.: Optimal design for universal multiport interferometers. Optica 3(12), 1460–1465 (2016)

    Article  ADS  Google Scholar 

  26. Ma, Y., Zhang, Y., Yang, S., Novack, A., Ding, R., Lim, A.E.-J., Lo, G.-Q., Baehr-Jones, T., Hochberg, M.: Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express 21(24), 29374–29382 (2013)

    Article  ADS  Google Scholar 

  27. Peruzzo, A., Laing, A., Politi, A., Rudolph, T., O’Brien, J.L.: Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011)

  28. Pittman, T.B., Jacbos, B.C., Franson, J.D.: Demonstration of feed-forward control for linear optics quantum computation. Phys. Rev. A 66, 052305 (2002)

    Article  ADS  Google Scholar 

  29. Sprengers, J.P., Gaggero, A., Sahin, D., Jahanmirinejad, S., Frucci, G., Mattioli, F., Leoni, R., Beetz, J., Lermer, M., Kamp, M., Höfling, S., et al.: Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99(18), 181110 (2011)

    Article  ADS  Google Scholar 

  30. Zhu, D., Zhao, Q.-Y., Choi, H., Lu, T.-J., Dane, A.E., Englund, D., Berggren, K.K.: A scalable multi-photon coincidence detector based on superconducting nanowires. Nat. Nanotechnol. 13(7), 596–601 (2018)

    Article  ADS  Google Scholar 

  31. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)

    Article  ADS  Google Scholar 

  32. Yang, M., Green, W.M.J., Assefa, S., Van Campenhout, J., et al.: Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks. Opt. Express 19, 47–54 (2010)

    Article  ADS  Google Scholar 

  33. Harris, N.C., Steinbrecher, G.R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., Chen, C., Wong, F.N.C., Baehr-Jones, T., Hochberg, M., Lloyd, S., Englund, D.: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447 (2017)

    Article  ADS  Google Scholar 

  34. Batten, C., Joshi, A., Orcutt, J., Holzwarth, C., Popovic, M., Hoyt, J., Kartner, F., Ram, R., Stojanovic, V., Asanovic, K.: Building manycore processor-to-dram networks with monolithic CMOS silicon photonics. IEEE Micro 24(4), 8–21 (2018)

    Article  Google Scholar 

  35. Zhang, Y., Hosseini, A., Xu, X., Kwong, D., Chen, R.T.: Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. Opt. Lett. 38(18), 3608–3611 (2013)

    Article  ADS  Google Scholar 

  36. Rasmussen, S.E., Chen, N.T.: Simple implementation of high fidelity controlled- iSWAP gates and quantum circuit exponentiation of non-Hermitian gates. Phy. Rev. A 2(3), 033097 (2020)

    Google Scholar 

  37. Bozkurt, A.B., Kocaman, S.: On-chip deterministic optical SWAP gate. In: Quantum Nanophotonic Materials, Devices, and Systems 2019, International Society for Optics and Photonics, vol. 1109110 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alkım B. Bozkurt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, A.B., Kocaman, S. Linear optical deterministic and reconfigurable SWAP gate. Quantum Inf Process 20, 299 (2021). https://doi.org/10.1007/s11128-021-03205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03205-x

Keywords

Navigation