Skip to main content
Log in

On S-mixing entropy of quantum channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, an S-mixing entropy of quantum channels is introduced as a generalization of Ohya’s S-mixing entropy. We investigate several properties of the introduced entropy. Moreover, certain relations between the S-mixing entropy and the existing map and output entropies of quantum channels are investigated as well. These relations allowed us to find certain connections between separable states and the introduced entropy. Hence, there is a sufficient condition to detect entangled states. Moreover, several properties of the introduced entropy are investigated. Besides, entropies of qubit and phase-damping channels are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldoshin, S.M., Feldman, E.B., Yurishchev, M.A.: Quantum entanglement and quantum discord in magnetoactive materials. Low Temp. Phys. 40, 3–16 (2014)

    Article  ADS  Google Scholar 

  2. Amosov, G.G.: On estimating the output entropy of the tensor product of a phase-damping channel and an arbitrary channel. Probl. Inf. Trans. 49, 224–231 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amosov, G.G.: Estimating the output entropy of a tensor product of two quantum channels. Theor. Math. Phys. 182, 397–406 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  5. Araki, H.: Relative entropy for states of von neumann algebras II. Publ. R.I.M.S. 11, 809 (1976)

    Article  MATH  Google Scholar 

  6. Araki, H.: Relative entropy for states of von neumann algebras II. Publ. R.I.M.S. 13, 173–192 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arveson, W.B.: Subalgebras of C *-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bengstoon, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglment. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  9. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  10. Choi, M.-D.: Completely positive linear maps on complex matrice. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holevo, A.S.: Quantum Systems, Channels, Information. De Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  12. Holevo, A.S.: Complementary channels and the additivity problem. Theory Probab. Appl. 51, 92–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: Independent condition for local realism? Phys. Lett. A 210, 377–381 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open Systems. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  15. Jamioalkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kossakowski, A., Ohya, M., Watanabe, N.: Quantum dynamical entropy for completely positive map. Infite Dimens. Anal. Quantum Probab. Relat. Top. 2, 267–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muraki, N., Ohya, M.: Entropy functionals of Kolmogorov–Sinai type and their limit theorems. Lett. Math. Phys. 36, 327–335 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Muraki, N., Ohya, M., Petz, D.: Entropies of general quantum states. Open Syst. Inf. Dyn. 1, 43–56 (1992)

    Article  MATH  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Nielsen, M.A., Kempe, J.: Separable states are more disordered globally than locally. Phys. Rev. Lett. 86, 5184 (2001)

    Article  ADS  Google Scholar 

  21. Ohya, M.: On compound state and mutual information in quantum information theory. IEEE Trans. Inf. Theory 29, 770–774 (1983)

    Article  MATH  Google Scholar 

  22. Ohya, M.: Note on quantum probability. L. Nuovo Cimento 38, 402–404 (1983)

    Article  MathSciNet  Google Scholar 

  23. Ohya, M.: Entropy transmission in C*-dynamical systems. J. Math. Anal. Appl. 100, 222–235 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ohya, M.: Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 27, 19–47 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  26. Ohya, M., Petz, D., Watanabe, N.: On capacities of quantum channels. Probab. Math. Stat. 17, 179–196 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Ohya, M., Watanabe, N.: Quantum entropy and its applications to quantum communication and statistical physics. Entropy 12, 1194–1245 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rastegin, A.E.: On unified-entropy characterization of quantum channels. J. Phys. A Math. Theor. 45, 045302 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Roga, W., Puchala, Z., Rudnicki, L., Zyczkowski, K.: Entropic trade-off relation for quantum operations. Phys. Rev. A 87, 032308 (2013)

    Article  ADS  Google Scholar 

  30. Roga, W., Zyczkowski, K., Fannes, M.: Entropic characterization of quantum operations. Int. J. Quantum Inf. 9, 1031–1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely positive trace-preserving maps on \(M_2\). Linear Algebra Appl. 347, 159–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stormer, E.: Positive Linear Maps of Operator Algebras. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  34. Umegaki, H.: Conditional expectation in an operator algebra, IV. Kodai Math. Semin. Rep. 14, 59–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. von Neumann, J.: Die Mathematischen Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  36. Watanabe, N.: Some aspects of complexities for quantum processes. Open Syst. Inf. Dyn. 16, 293–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Watanabe, N.: Quantum transmission processes and their entropies. Russ. J. Math. Phys. 21, 408–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ziman, M.: Incomplete quantum process tomography and principle of maximal entropy. Phys. Rev. A 78, 032118 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zyczkowski, K., Bengtsson, I.: On duality between quantum maps and quantum states. Open Syst. Inf. Dyn. 11, 3–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their useful suggestions which allowed us to improve the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F., Watanabe, N. On S-mixing entropy of quantum channels. Quantum Inf Process 17, 148 (2018). https://doi.org/10.1007/s11128-018-1916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1916-8

Keywords

Mathematics Subject Classification

Navigation