Skip to main content
Log in

Discrete phase-space structures and Wigner functions for N qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We further elaborate on a phase-space picture for a system of N qubits and explore the structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves satisfying certain additional properties and different entanglement properties. We discuss the construction of discrete covariant Wigner functions for these bundles and provide several illuminating examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schroek, F.E.: Quantum Mechanics on Phase Space. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  2. Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2001)

    Book  MATH  Google Scholar 

  3. Zachos, C.K., Fairlie, D.B., Curtright, T.L. (eds.): Quantum Mechanics in Phase Space. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  4. Weyl, H.: Gruppentheorie und Quantemechanik. Hirzel-Verlag, Leipzig (1928)

    MATH  Google Scholar 

  5. Hannay, J.H., Berry, M.V.: Quantization of linear maps on a Torus–Fresnel diffraction by aperiodic grating. Phys. D 1, 267–290 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leonhardt, U.: Quantum-state tomography and discrete Wigner function. Phys. Rev. Lett. 74, 4101–4103 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zak, J.: Doubling feature of the Wigner function: finite phase space. J. Phys. A Math. Theor. 44, 345305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miquel, C., Paz, J.P., Saraceno, M.: Quantum computers in phase space. Phys. Rev. A 65, 062309 (2002)

    Article  ADS  Google Scholar 

  9. Paz, J.P.: Discrete Wigner functions and the phase-space representation of quantum teleportation. Phys. Rev. A 65, 062311 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Buot, F.A.: Method for calculating \({{\rm Tr}} {\cal{H}}^n\) in solid-state theory. Phys. Rev. B 10, 3700–3705 (1973)

    Article  ADS  Google Scholar 

  11. Schwinger, J.: Unitary operator basis. Proc. Natl. Acad. Sci. USA 46, 570–576 (1960)

    Article  ADS  MATH  Google Scholar 

  12. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galetti, D., de Toledo Piza, A.F.R.: An extended Weyl–Wigner transformation for special finite spaces. Phys. A 149, 267–282 (1988)

    Article  MathSciNet  Google Scholar 

  14. Cohendet, O., Combe, P., Sirugue, M., Sirugue-Collin, M.: A stochastic treatment of the dynamics of an integer spin. J. Phys. A Math. Gen. 21, 2875–2884 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Galetti, D., de Toledo Piza, A.F.R.: Discrete quantum phase spaces and the mod \(N\) invariance. Phys. A 186, 513–523 (1992)

    Article  MathSciNet  Google Scholar 

  16. Kasperkovitz, P., Peev, M.: Wigner–Weyl formalism for toroidal geometries Ann. Phys. 230, 21–51 (1994)

    MATH  Google Scholar 

  17. Rivas, A.M.F., de Almeida, A.M.O.: The Weyl representation on the torus. Ann. Phys. 276, 223–256 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67, 267–320 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ligabò, M.: Torus as phase space: Weyl quantization, dequantization, and Wigner formalism. J. Math. Phys. 57, 082110 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 176, 1–21 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 062101 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chuang, I., Nielsen, M.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Delsarte, P., Goethals, J.M., Seidel, J.J.: Bounds for systems of lines and Jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975)

    MATH  Google Scholar 

  24. Wootters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16, 391–405 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Romero, J.L., Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: Structure of the sets of mutually unbiased bases for \(n\) qubits. Phys. Rev. A 72, 062310 (2005)

    Article  ADS  Google Scholar 

  27. Björk, G., Romero, J.L., Klimov, A.B., Sánchez-Soto, L.L.: Mutually unbiased bases and discrete Wigner functions. J. Opt. Soc. Am. B 24, 371–378 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Galvão, E.F.: Discrete Wigner functions and quantum computational speedup. Phys. Rev. A 71, 042302 (2005)

    Article  ADS  Google Scholar 

  29. Cormick, C., Galvão, E.F., Gottesman, D., Paz, J.P., Pittenger, A.O.: Interference in discrete Wigner functions. Phys. Rev. A 74, 062315 (2006)

    Article  ADS  Google Scholar 

  30. Gross, D.: Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Klimov, A.B., Sánchez-Soto, L.L., de Guise, H.: Multicomplementary operators via finite Fourier transform. J. Phys. A 38, 2747–2760 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wootters, W.K.: Picturing qubits in phase space. IBM J. Res. Dev. 48, 99–110 (2004)

    Article  Google Scholar 

  33. Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L.: Discrete phase-space structure of \(n\)-qubit mutually unbiased bases. Ann. Phys. 324, 53–72 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  35. Klimov, A.B., Muñoz, C., Romero, J.L.: Geometrical approach to the discrete Wigner function in prime power dimensions. J. Phys. A 39, 14471–14480 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Duncan, R., Perdrix, S.: chap. Graph states and the necessity of Euler decomposition. In: Mathematical Theory and Computational Practice, pp. 167–177. Springer, Berlin (2009)

  37. Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: The discrete Wigner function. Prog. Opt. 51, 469–516 (2008)

    Article  Google Scholar 

  38. Hudson, R.L.: When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249–252 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Soto, F., Claverie, P.: When is the Wigner function of multidimensional systems nonnegative? J. Math. Phys. 24, 97–100 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  40. Kenfack, A., Życzkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 6, 396–404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. Siyouri, F., El Baz, M., Hassouni, Y.: The negativity of Wigner function as a measure of quantum correlations. Quantum Inf. Proc. 15, 4237–4252 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Weigert, S., Wilkinson, M.: Mutually unbiased bases for continuous variables. Phys. Rev. A 78, 020303(R) (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Grant 254127 of CONACyT (Mexico). L. L. S. S. acknowledges the support of the Spanish MINECO (Grant FIS2015-67963-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sánchez-Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, C., Klimov, A.B. & Sánchez-Soto, L. Discrete phase-space structures and Wigner functions for N qubits. Quantum Inf Process 16, 158 (2017). https://doi.org/10.1007/s11128-017-1607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1607-x

Keywords

Navigation