Skip to main content
Log in

Teleportation of a qubit using entangled non-orthogonal states: a comparative study

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice’s, Bob’s and to be teleported qubits), but the converse may be observed in some particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operations on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  4. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  5. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 09, 389–403 (2011)

    Article  MATH  Google Scholar 

  6. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)

    Article  ADS  Google Scholar 

  7. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)

    Article  ADS  MATH  Google Scholar 

  11. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811–6815 (1992)

    Article  ADS  Google Scholar 

  12. Mann, A., Sanders, B.C., Munro, W.J.: Bell’s inequality for an entanglement of nonorthogonal states. Phys. Rev. A 51, 989–991 (1995)

  13. Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  14. Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978)

    Article  ADS  Google Scholar 

  15. Mann, A., Revzen, M., Schleich, W.: Unique Bell state. Phys. Rev. A 46, 5363–5366 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, X.: Bipartite entangled non-orthogonal states. J. Phys. A: Math. Gen. 35, 165 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Prakash, H., Chandra, N., Prakash, R.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)

    Article  ADS  Google Scholar 

  18. Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B: At. Mol. Opt. Phys. 43, 185501 (2010)

    Article  ADS  Google Scholar 

  19. Prakash, H., Mishra, M.K.: Increasing Average Fidelity by Using Non-Maximally Entangled Resource in Teleportation of Superposed Coherent States. arxiv:1107.2533 (2011)

  20. Wang, X., Sanders, B.C., Pan, S.H.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A: Math. Gen. 33, 7451 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Prakash, H., Chandra, N., Prakash, R., Shivani, : Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B. 23, 2083–2092 (2009)

    Article  ADS  MATH  Google Scholar 

  22. Kumar, S.A., Prakash, H., Chandra, N., Prakash, R.: Noise in swapping between two pairs of non-orthogonal entangled coherent states. Mod. Phys. Lett. B. 27, 1350017 (2013)

    Article  ADS  Google Scholar 

  23. Dong, L., Wang, J.X., Xiu, X.M., Li, D., Gao, Y.J., Yi, X.X.: A continuous variable quantum key distribution protocol based on entanglement swapping of quasi-Bell entangled coherent states. Int. J. Theor. Phys. 53, 3173–3190 (2014)

    Article  MATH  Google Scholar 

  24. Hirota, O., Van Enk, S.J., Nakamura, K., Sohma, M., Kato, K.: Entangled Nonorthogonal States and Their Decoherence Properties. arXiv:quant-ph/0101096 (2001)

  25. de Souza, D.D., Vidiella-Barranco, A.: Quantum Phase Estimation with Squeezed Quasi-Bell States. arxiv:1609.00370 (2016)

  26. Prakash, H., Chandra, N., Prakash, R.: Effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 1613 (2007)

    Article  ADS  MATH  Google Scholar 

  27. Prakash, H., Chandra, N., Prakash, R., Shivani: Effect of decoherence on fidelity in teleportation of entangled coherent states. Int. J. Quantum Inf. 6, 1077–1092 (2008)

  28. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. D’Ariano, G.M., Presti, P.L., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272, 32–38 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  35. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  37. Fu, H., Wang, X., Solomon, A.I.: Maximal entanglement of nonorthogonal states: classification. Phys. Rev. Lett. A 291, 73–76 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  39. Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Henderson, L., Hardy, L., Vedral, V.: Two-state teleportation. Phys. Rev. A 61, 062306 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  42. Banerjee, A., Shukla, C., Thapliyal, K, Pathak, A., Panigrahi, P. K.: Asymmetric Quantum Dialogue in Noisy Environment. Quantum Inf. Process. 16, 49 (2017). doi:10.1007/s11128-016-1508-4

  43. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical Joint Remote State Preparation in Noisy Environment. arxiv:1605.07399 (2016)

  44. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin–qubit systems. Ann. Phys. 362, 261 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum Cryptography Over Non-Markovian Channels. arxiv:1608.06071 (2016)

Download references

Acknowledgements

VV and AP thank Department of Science and Technology (DST), India, for the support provided through the Project Number EMR/2015/000393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodia, M., Verma, V., Thapliyal, K. et al. Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf Process 16, 76 (2017). https://doi.org/10.1007/s11128-017-1526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1526-x

Keywords

Navigation