Skip to main content
Log in

Grover’s algorithm and the secant varieties

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper we investigate the entanglement nature of quantum states generated by Grover’s search algorithm by means of algebraic geometry. More precisely we establish a link between entanglement of states generated by the algorithm and auxiliary algebraic varieties built from the set of separable states. This new perspective enables us to propose qualitative interpretations of earlier numerical results obtained by M. Rossi et al. We also illustrate our purpose with a couple of examples investigated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In this paper a projective algebraic variety is understood as a subset \(X\subset \mathbb {P}(V)\) defined by the zero locus of a collection of homogeneous polynomials.

References

  1. Batle, J., Ooi, C.R., Farouk, A., Alkhambashi, M.S., Abdalla, S.: Global versus local quantum correlations in the Grover search algorithm. Quantum Inf. Process. 15(2), 833–849 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A., Thapliyal, A.V.: Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A 63(1), 012307 (2000)

    Article  ADS  Google Scholar 

  3. Brody, D.C., Gustavsson, A.C., Hughston, L.P.: Entanglement of three-qubit geometry. In: Journal of Physics: Conference Series, vol. 67, No. 1, p. 012044. IOP Publishing (2007)

  4. Brylinski, J.L.: Algebraic measures of entanglement. In: Mathematics of Quantum Computation, p. 3–23. Chapman/Hall (CRC) (2002)

  5. Catalisano, M.V., Geramita, A., Gimigliano, A.: Secant varieties of \(({\mathbb{P}}^1) \times ....\times ({\mathbb{P}}^1)\) (n-times) are NOT Defective for \(n\ge 5\). arXiv:0809.1701 (2008)

  6. Chakraborty, S., Banerjee, S., Adhikari, S., Kumar, A.: Entanglement in the Grover’s Search Algorithm. arXiv:1305.4454 (2013)

  7. Cui, J., Fan, H.: Correlations in the Grover search. J. Phys. A Math. Theor. 43(4), 045305 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fang, Y., Kaszlikowski, D., Chin, C., Tay, K., Kwek, L.C., Oh, C.H.: Entanglement in the Grover search algorithm. Phys. Lett. A 345(4), 265–272 (2005)

    Article  ADS  MATH  Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory, vol. 129. Springer, Berlin (1991)

    MATH  Google Scholar 

  11. Galindo, A., Martin-Delgado, M.A.: Family of Grover’s quantum-searching algorithms. Phys. Rev. A 62(6), 062303 (2000)

    Article  ADS  Google Scholar 

  12. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709 (1997)

    Article  ADS  Google Scholar 

  14. Harris, J.: Algebraic Geometry: A First Course, vol. 133. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Heydari, H.: Geometrical structure of entangled states and the secant variety. Quantum Inf. Process. 7(1), 43–50 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Holweck, F., Lévay, P.: Classification of multipartite systems featuring only \(|W{\rangle }\) and \(|GHZ{\rangle }\) genuine entangled states. J. Phys. A Math. General 49(8), 085201 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Holweck, F., Luque, J.G., Thibon, J.Y.: Entanglement of four qubit systems: a geometric atlas with polynomial compass II (the tame world). arXiv:1606.05569 (2016)

  18. Holweck, F., Luque, J.G., Thibon, J.Y.: Geometric descriptions of entangled states by auxiliary varieties. J. Math. Phys. 53(10), 102203 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Holweck, F., Luque, J.G., Thibon, J.Y.: Entanglement of four qubit systems: a geometric atlas with polynomial compass I (the finite world). J. Math. Phys. 55(1), 012202 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Holweck, F., Luque, J.G., Planat, M.: Singularity of type D4 arising from four-qubit systems. J. Phys. A Math. Theor. 47(13), 135301 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hübener, R., Kleinmann, M., Wei, T.C., González-Guillén, C., Gühne, O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80(3), 032324 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Landsberg, J.M.: Tensors: Geometry and Applications. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  23. Lavor, C., Manssur, L.R.U., Portugal, R.: Grover’s Algorithm: Quantum Database Search. arXiv:quant-ph/0301079 (2003)

  24. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. arXiv:quant-ph/0108104 (2001)

  25. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85(9), 2014 (2000)

    Article  ADS  Google Scholar 

  26. Miyake, A.: Multipartite entanglement under stochastic local operations and classical communication. Int. J. Quantum Inf. 2(01), 65–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Parfenov, P.G.: Tensor products with finitely many orbits. Russ. Math. Surv. 53(3), 635–636 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rieffel, E.G., Polak, W.H.: Quantum Computing: A Gentle Introduction. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  29. Rossi, M., Bruß, D., Macchiavello, C.: Scale invariance of entanglement dynamics in Grover’s quantum search algorithm. Phys. Rev. A 87(2), 022331 (2013)

    Article  ADS  Google Scholar 

  30. Rossi, M., Bruß, D., Macchiavello, C.: Hypergraph states in Grover’s quantum search algorithm. Phys. Scr. 2014(T160), 014036 (2014)

    Article  Google Scholar 

  31. Sanz, M., Braak, D., Solano, E., Egusquiza, I.L: Entanglement Classification with Algebraic Geometry. arXiv:1606.06621 (2016)

  32. Sawicki, A., Tsanov, V.V.: A link between quantum entanglement, secant varieties and sphericity. J. Phys. A Math. Theor. 46(26), 265301 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65(5), 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zak, F.L.: Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, vol. 127. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Jean-Gabriel Luque for kindly providing them his Maple code to compute the invariants/covariants used in the calculation of Sect. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Holweck.

Appendix: Examples of marked elements

Appendix: Examples of marked elements

The following tables provide examples of sets of marked elements which allows to reach the corresponding orbits by running Grover’s algorithm in the standard regime \(|S|<\dfrac{N}{4}\) (See Tables 4, 5, 6).

Table 4 Examples of family of marked elements S and the corresponding orbits reached by the algorithm in the \(2\times 2\times 2\) case
Table 5 Examples of family of marked elements S and the corresponding orbits reached by the algorithm in the \(2\times 2\times 3\) case
Table 6 Examples of family of marked elements S and the corresponding orbits reached by the algorithm in the \(2\times 3\times 3\) case

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holweck, F., Jaffali, H. & Nounouh, I. Grover’s algorithm and the secant varieties. Quantum Inf Process 15, 4391–4413 (2016). https://doi.org/10.1007/s11128-016-1445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1445-2

Keywords

Navigation