Skip to main content
Log in

Generation of atomic NOON states via shortcuts to adiabatic passage

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on Lewis–Riesenfeld invariants and quantum Zeno dynamics, we propose an effective scheme for generating atomic NOON states via shortcuts to adiabatic passage. The photon losses are efficiently suppressed by engineering shortcuts to adiabatic passage in the scheme. The numerical simulation shows that the atomic NOON states can be generated with high fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  3. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  4. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  5. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  6. Ghosh, S., Kar, G., Roy, A., Sen, A., Sen, U.: Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000)

    Article  ADS  Google Scholar 

  11. Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  12. Dowling, J.P.: Quantum optical metrology-the lowdown on high-NOON states. Contemp. Phys. 49, 125–143 (2008)

    Article  ADS  Google Scholar 

  13. Nikoghosyan, G., Hartmann, M.J., Plenio, M.B.: Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108, 123603 (2012)

    Article  ADS  Google Scholar 

  14. D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)

    Article  ADS  Google Scholar 

  15. Edamatsu, K., Shimizu, R., Itoh, T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)

    Article  ADS  Google Scholar 

  16. Glasser, R.T., Cable, H., Dowling, J.P.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008)

    Article  ADS  Google Scholar 

  17. Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)

    Article  ADS  Google Scholar 

  18. Harris, S.E., Yamamoto, Y.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  19. Parkins, A.S., Marte, P., Zoller, P., Carnal, O., Kimble, H.J.: Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51, 1578 (1995)

    Article  ADS  Google Scholar 

  20. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283, 189–191 (2010)

    Article  ADS  Google Scholar 

  22. Bertet, P., Osnaghi, S., Milman, P., Auffeves, A., Maioli, P., Brune, M., Haroche, S.: Generating and probing a two-photon Fock state with a single atom in a cavity. Phys. Rev. Lett. 88, 143601 (2002)

    Article  ADS  Google Scholar 

  23. Auffeves, A., Maioli, P., Meunier, T., Gleyzes, S., Nogues, G., Brune, M., Haroche, S.: Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity. Phys. Rev. Lett. 91, 230405 (2003)

    Article  ADS  Google Scholar 

  24. Meunier, T., Gleyzes, S., Maioli, P., Auffeves, A., Nogues, G., Brune, M., Haroche, S.: Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. Phys. Rev. Lett. 94, 010401 (2005)

    Article  ADS  Google Scholar 

  25. Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)

    Article  ADS  Google Scholar 

  26. Haroche, S.: Entanglement experiments in cavity QED. Fortsch. Phys. 51, 388–395 (2003)

    Article  ADS  Google Scholar 

  27. Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B At. Mol. Opt. Phys. 32, 4535–4546 (1999)

    Article  ADS  Google Scholar 

  28. Gong, S.Q., Unanyan, R., Bergmann, K.: Preparation of Fock states and quantum entanglement via stimulated Raman adiabatic passage using a four-level atom. Eur. Phys. J. D 19, 257–262 (2002)

    ADS  Google Scholar 

  29. Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Liu, Q.G., Wu, Q.C., Leng, C.L., Liang, Y., Ji, X., Zhang, S.: Generation of atomic NOON states via adiabatic passage. Quantum Inf. Process. 13, 2801–2814 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Song, P.J., Lü, X.Y., Si, L.G., Yang, X.X.: Deterministic generation of Greenberger–Horne–Zeilinger and W states for three distant atoms via adiabatic passage. Chin. Phys. B 20, 050308 (2011)

    Article  ADS  Google Scholar 

  32. Goto, H., Ichimura, K.: Population transfer via stimulated Raman adiabatic passage in a solid. Phys. Rev. A 74, 053410 (2006)

    Article  ADS  Google Scholar 

  33. Yan, D., Cui, C.L., Zhang, M., Wu, J.H.: Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage. Phys. Rev. A 84, 043405 (2011)

    Article  ADS  Google Scholar 

  34. Hou, Q.Z., Yang, W.L., Feng, M., Chen, C.Y.: Quantum state transfer using stimulated Raman adiabatic passage under a dissipative environment. Phys. Rev. A 88, 013807 (2013)

    Article  ADS  Google Scholar 

  35. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    Article  ADS  Google Scholar 

  36. Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117–169 (2013)

    Article  ADS  Google Scholar 

  37. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrodinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403–100403 (2012)

    Article  ADS  Google Scholar 

  38. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)

    Article  ADS  Google Scholar 

  39. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  40. Guéry-Odelin, D., Muga, J.G., Ruiz-Montero, M.J., Trizac, E.: Nonequilibrium solutions of the Boltzmann equation under the action of an external force. Phys. Rev. Lett. 112, 180602 (2014)

    Article  ADS  Google Scholar 

  41. Liang, Y., Ji, X., Wang, H.F., Zhang, S.: Deterministic SWAP gate using shortcuts to adiabatic passage. Laser Phys. Lett. 12, 115201 (2015)

    Article  ADS  Google Scholar 

  42. Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91, 032304 (2015)

    Article  ADS  Google Scholar 

  43. Liang, Y., Song, C., Ji, X., Zhang, S.: Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. Opt. Express 23, 23798–23810 (2015)

    Article  ADS  Google Scholar 

  44. Schloss, J., Benseny, A., Gillet, J., Swain, J., Busch, T.: Non-adiabatic generation of NOON states in a Tonks–Girardeau gas. 1601, 00369 (2016)

  45. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Lohe, M.A.: Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. A Math. Theor. 42, 035307 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12–19 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys Conf. Ser. 196, 012017 (2009)

    Article  ADS  MATH  Google Scholar 

  49. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)

    Article  ADS  Google Scholar 

  50. Facchi, P., Pascazio, S.: Quantum zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004)

    Article  ADS  Google Scholar 

  52. Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)

    Article  ADS  Google Scholar 

  53. Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulse. Phys. Rev. A 40, 6741–6744 (1989)

    Article  ADS  Google Scholar 

  54. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)

    Article  ADS  Google Scholar 

  55. Liu, K., Chen, L.B., Shi, P., Zhang, W.Z., Gu, Y.J.: Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf. Process. 12, 3057–3066 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Zheng, S.B., Guo, G.C.: Tunable phase gate for two atoms with an immunity to decoherence. Phys. Rev. A 73, 052328 (2006)

    Article  ADS  Google Scholar 

  57. Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., Monz, T., Riebe, M., Laurent, P.: Absolute frequency measurement of the \(^{40}C_{a}^{+}4_{S}^{2}S_{1/2}-3d^{2}D_{3/2}\) clock transition. Phys. Rev. Lett. 102, 023002 (2009)

    Article  ADS  Google Scholar 

  58. Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A 69, 062306 (2004)

    Article  ADS  Google Scholar 

  59. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  60. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11464046 and 61465013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Su, SL., Bai, CH. et al. Generation of atomic NOON states via shortcuts to adiabatic passage. Quantum Inf Process 15, 4159–4173 (2016). https://doi.org/10.1007/s11128-016-1372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1372-2

Keywords

Navigation