Skip to main content
Log in

Entanglement sudden death in the presence of quantum decoherence in non-inertial frames: beyond the single-mode approximation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The entanglement behavior of Dirac field under quantum decoherence in the non-inertial frames is studied beyond the single-mode approximation. Two kinds of damping processes, amplitude damping channel and dephasing channel, are investigated as the sources of decoherence. The decoherence and Unruh effect will lead to entanglement degradation. This study demonstrates that as two observers experience the decoherence, the entanglement sudden death will occur in amplitude damping channel. Our study shows that the entanglement sudden death will occur in the presence of Unruh effect accompanying the decoherence. In addition, our results show that the amplitude damping channel has more remarkable impacts than the dephasing channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambrige (2010)

    Book  MATH  Google Scholar 

  2. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  3. Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phy. Rev. Lett. 88, 230402 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  4. Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  5. Gingrich, R.M., Bergou, A.J., Adami, C.: Entangled light in moving frames. Phys. Rev. A 68, 042102 (2003)

    Article  ADS  Google Scholar 

  6. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  8. Doukas, J., Hollenberg, L.C.L.: Loss of spin entanglement for accelerated electrons in electric and magnetic fields. Phys. Rev. A 79, 052109 (2009)

    Article  ADS  Google Scholar 

  9. Martin-Martinez, E., Garay, L.J., Leon, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  10. Hwang, M., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  11. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  12. Nasr Esfahani, B., Shamirzaie, M., Soltani, M.: Reduction of entanglement degradation in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 84, 025024 (2011)

    Article  ADS  Google Scholar 

  13. Shamirzaie, M., Nasr Esfahani, B., Soltani, M.: Tripartite entanglements in noninertial frames. Int. J. Theor. Phys. 51, 787–804 (2012)

    Article  MATH  Google Scholar 

  14. Nasr Esfahani, B., Dehdashti, S.: Gravitational spin entropy production. Int. J. Theor. Phys. 46, 1495–1505 (2007)

    Article  MATH  Google Scholar 

  15. Bruschi, D.E., Louko, J., Martin-Martinez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  16. Martin-Martinez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  17. Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86, 025026 (2012)

    Article  ADS  Google Scholar 

  18. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  20. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–982 (1976)

    Article  ADS  Google Scholar 

  21. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  22. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  23. Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. Wang, J., Jing, J.: System-environment dynamics of X-type states in noninertial frames. Ann. Phys. 327, 283–291 (2012)

    Article  ADS  MATH  Google Scholar 

  25. Tian, Z., Jing, J.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264–271 (2012)

    Article  ADS  Google Scholar 

  26. Zhang, W., Deng, J., Jing, J.: Dependence of entanglement on initial states under amplitude damping channel in non-inertial frames. J. Quantum Inf. Sci. 2, 23–27 (2012)

    Article  Google Scholar 

  27. Ramzan, M.: Entanglement dynamics of non-inertial observers in a correlated environment. Quantum Inf. Process. 12, 83–95 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quantum Inf. Process. 11, 443–454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramzan, M.: Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature. Quantum Inf. Process. 12, 2721–2738 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Landulfo, A.G.S., Matsas, G.E.A.: Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A 80, 032315 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. Friis, N., Köhler, P., Martin-Martinez, E., Bertlmann, R.A.: Residual entanglement of accelerated fermions is not nonlocal. Phys. Rev. A 84, 062111 (2011)

    Article  ADS  Google Scholar 

  32. Montero, M., Martin-Martinez, E.: The entangling side of the Unruh-Hawking effect. J. High Energy Phys. 07, 006 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic systems in an accelerated frame. Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  34. Martin-Martinez, E., Hosler, D., Montero, M.: Fundamental limitations to information transfer in accelerated frames. Phys. Rev. A 86, 062307 (2012)

    Article  ADS  Google Scholar 

  35. Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Montero, M., Martin-Martinez, E.: Fermionic entanglement ambiguity in noninertial frame. Phys. Rev. A 83, 062323 (2011)

    Article  ADS  Google Scholar 

  37. Montero, M., Martin-Martinez, E.: Convergence of fermionic-field entanglement at infinite acceleration in relativistic quantum information. Phys. Rev. A 85, 024301 (2012)

    Article  ADS  Google Scholar 

  38. Ramzan, M.: Decoherence and multipartite entanglement of non-inertial observers Chin. Phys. Lett. 29, 020302 (2012)

    Google Scholar 

  39. Alsing, P.M., Fuentes, I.: Observer-dependent entanglement. Class. Quantum Grav. 29, 224001 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  40. Brown, E.G.: Vanishing geometric discord in noninertial frames. Phys. Rev. A 86, 032108 (2012)

    Article  ADS  Google Scholar 

  41. Doukas, J., Brown, E.G., Dragon, A., Mann, R.B.: Entanglement and discord: Accelerated observations of local and global modes. Phys. Rev. A 87, 012306 (2013)

    Article  ADS  Google Scholar 

  42. Ramzan, M.: Dynamics of multipartite quantum correlations under decoherence. Eur. Phys. J. D 67, 170 (2013)

    Article  ADS  Google Scholar 

  43. Dragon, A., Doukas, J., Martin-Martinez, E.: Localized detection of quantum entanglement through the event horizon. Phys. Rev. A 87, 052326 (2013)

    Article  ADS  Google Scholar 

  44. Ramzan, M.: Dynamics of fermionic geometric discord beyond single-mode approximations. Chin. Phys. Lett. 30, 060307 (2013)

    Article  ADS  Google Scholar 

  45. Sagheer, A., Hamdoun, H.: Dynamics of multi-qubit states in non-inertial frames for quantum communication applications. Quantum Inf. Comput. 14, 0255–0264 (2014)

    MathSciNet  Google Scholar 

  46. Aguilar, P., Chryssomalakos, C., Hernandez-Coronado, H., Okon, E.: Constrained quantum particles and geometric phases in noninertial frames. J. Phys. A: Math. Theor. 46, 335303 (2013)

    Article  MathSciNet  Google Scholar 

  47. Ramzan, M.: Divergence of fermionic correlations under non-Markovian noise in a non-inertial frame. Phys. A 392, 5248–5254 (2013)

    Article  Google Scholar 

  48. Adesso, G., Rogy, S., Girolami, D.: Continuous variable methods in relativistic quantum information: characterisation of quantum and classical correlations of scalar field modes in noninertial frames. Class. Quant. Grav. 29, 224002 (2012)

    Article  ADS  Google Scholar 

  49. Metwally, N.: Teleportation of accelerated information. JOSA B 30, 233–237 (2013)

    Article  ADS  Google Scholar 

  50. Ramzan, M.: Decoherence dynamics of discord for multipartite quantum systems. Eur. Phys. J. D 67, 170 (2013)

    Google Scholar 

  51. Bruschi, D.E., Lee, A.R., Fuentes, I.: Time evolution techniques for detectors in relativistic quantum information. J. Phys. A: Math. Theor. 46, 165303 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  52. Ghorashi, S.A.A., Aminjavaheri, M.H., Bagheri Harouni, M.: Quantum decoherence of Dirac fields in non-inertial frames beyond the single-mode approximation. Quantum Inf. Process 13, 521–545 (2014)

    Article  MathSciNet  Google Scholar 

  53. Salles, A., Melo, F., Almeidal, M.P., Hor-Meyll, M., Walborn, S.P., Souto Riberio, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  54. Kraus, K.: State, Effects and Operations: Fundamental Notations of Quantum Theory. Springer, Berlin (1983)

    Book  Google Scholar 

  55. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Piao, M.Z., Ji, X.: Quantum decoherence under phase damping in non-inertial frames. J. Mod. Opt. 59, 21–25 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  57. Wang, Y., Ji, X.: Quantum decoherence with the Unruh single-particle state having right and left components. J. Mod. Opt. 59, 571–578 (2012)

    Article  ADS  Google Scholar 

  58. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  59. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bagheri Harouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminjavaheri, M.H., Ghorashi, S.A.A. & Bagheri Harouni, M. Entanglement sudden death in the presence of quantum decoherence in non-inertial frames: beyond the single-mode approximation. Quantum Inf Process 13, 1483–1499 (2014). https://doi.org/10.1007/s11128-014-0742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0742-x

Keywords

Navigation