Skip to main content
Log in

Quantum coding in non-inertial frames

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum and classical correlations are quantified by means of the coherent and mutual information, respectively, where we use the single-mode approximation. It is shown that the users can communicate in an optimal way for small values of accelerations. The capacity of accelerated channel is investigated for different classes of initial states. It is shown that the capacities of the traveling channels depend on the frame in which the accelerated channels are observed in and the initial shared state between the partners. In some frames, the capacities decay as the accelerations of both qubit increase. The decay rate is larger if the partners initially share a maximum entangled state. The possibility of using the accelerated quantum channels to perform quantum coding protocol is discussed. The amount of decoded information is quantified for different cases, where it decays as the partner’s accelerations increase to reach its minimum bound. This minimum bound depends on the initial shared states, and it is large for maximum entangled state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Del-Rey, M., Porras, D., Martìinez, E.M.: Simulating accelerated atoms coupled to a quantum field. Phys. Rev. A 86, 02511 (2012)

    Google Scholar 

  2. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A. 83, 022314 (2011)

    Article  ADS  Google Scholar 

  3. Dehnavi, H.M., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-entanglement evaluated in noninertial frames. Ann. Phys. 326, 132 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Ramazan, M., Khan, M.: Decoherence and entanglement degradation of a qubit–qutrit system in non-inertial frames. Quantum Inf. Process. 11, 443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Khan, S., Khan, M.K.: Relativistic quantum games in noninertial frames. J. Phys. A Math. Theor. 44, 35530 (2011)

    MATH  Google Scholar 

  6. Goudarzi, H., Beyrami, S.: Effect of uniform acceleration on multiplayer quantum game. J. Phys. A. Math. Theor. 35, 225301 (2012)

    Article  ADS  MATH  Google Scholar 

  7. Metwally, N.: Usefulness classes of travelling entangled channels in noninertial frames. Int. J. Mod. Phys. B 27, 1350155 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Alsing, P., Milburn, G.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  9. Alsing, P., McMahon, D., Milburn, G.: Teleportation in a non-inertial frame. J. Opt. B 6, S834 (2004)

    Article  ADS  Google Scholar 

  10. Metwally, N.: Teleportation of accelerated information. J. Opt. Soc. Am. B 30, 233–237 (2013)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Bose, S., Plenio, M., Vedral, V.: Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47, 291 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A. 63, 022302 (2001)

    Article  ADS  Google Scholar 

  14. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inform. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Rev. A 84, 042313 (2011)

    Article  Google Scholar 

  16. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 881, 042105 (2010)

    Article  ADS  Google Scholar 

  17. Ali, M., Alber, G., Rau, A.R.P.: Manipulating entanglement sudden death of two-qubit X-states in zero-and finite-temperature reservoirs. J. Phys. B 42, 025501 (2009)

    Article  ADS  Google Scholar 

  18. Martinez, E.M., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  19. Doukas, J., Brown, E.G., Dragan, A., Mann, R.B.: Entanglement and discord: accelerated observations of local and global modes. Phys. Rev. A 87, 012306 (2013)

    Article  ADS  Google Scholar 

  20. Dragan, A., Doukas, J., Martin-Martinez, E., Bruschi, D.: Localised projective measurement of a relativistic quantum field in non-inertial frames. arXiv:1203.0655 (2012)

  21. Dragan, A., Doukas, J., Martine-Martinez, E.: Localized detection of quantum entanglement through the event horizon. arXiv:1207.4275 (2012)

  22. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, NY (1994)

    Book  MATH  Google Scholar 

  23. Bruschi, D.E., Louko, J., Martn-Martnez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  24. Alsing, P., Schuller, I.F., Mann, R., Tessier, T.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  25. Martinez, E.M., Hosler, D., Montero, M.: Fundamental limitations to information transfer in accelerated frames. Phys. Rev. A 86, 062307 (2012)

    Article  ADS  Google Scholar 

  26. Hosler, D., van de Bruck, C., Kok, P.: Information gap for classical and quantum communication in a Schwarzschild spacetime. Phys. Rev. 85, 042312 (2012)

    Article  ADS  Google Scholar 

  27. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081 (1999)

    Article  ADS  Google Scholar 

  28. Metwally, N.: Quantum dense coding and dynamics of information over Bloch channels. J. Phys. A Math. Theor. 44, 055305 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Metwally, N.: Dynamics of encrypted information in superconducting qubits with the presence of imperfect operations. J. Opt. Soc. Am. B. 29, 389 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for their constructive comments and remarks, which have improved the manuscript in many aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Metwally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metwally, N., Sagheer, A. Quantum coding in non-inertial frames. Quantum Inf Process 13, 771–780 (2014). https://doi.org/10.1007/s11128-013-0688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0688-4

Keywords

Navigation