Skip to main content
Log in

Non-Hermitian quantum annealing in the antiferromagnetic Ising chain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A non-Hermitian quantum optimization algorithm is created and used to find the ground state of an antiferromagnetic Ising chain. We demonstrate analytically and numerically (for up to \(N=1,024\) spins) that our approach leads to a significant reduction in the annealing time that is proportional to \(\ln N\), which is much less than the time (proportional to \(N^2\)) required for the quantum annealing based on the corresponding Hermitian algorithm. We propose to use this approach to achieve similar speed-up for NP-complete problems by using classical computers in combination with quantum algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Google Scholar 

  2. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472 (2001)

    Google Scholar 

  3. Suzuki, S., Okada, M.: Quantum annealing and related optimization methods. In: Das, A., Chakrabarti, B.K. (eds.) Lecture Notes in Physics, vol. 679, pp. 207–238, Springer, Berlin (2005)

  4. Das, A., Chakrabarti, B.K.: Quantum annealing and analog quantum computations. Rev. Mod. Phys. 80(3), 1061 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Santoro, G.E., Martonak, R., Tosatti, E., Car, R.: Theory of quantum annealing of an Ising spin glass. Science 295, 2427 (2002)

    Article  ADS  Google Scholar 

  6. Quantum quenching, annealing and computation. In: Chandra, A.K., Das A., Chakrabarti B.K. (eds.) Lecture Notes in Physics, vol. 802. Springer, Berlin (2010)

  7. Stella, L., Santoro, G.E., Tosatti, E.: Phys. Rev. B 72, 014303 (2005)

    Google Scholar 

  8. Suzuki, S., Nishimori, H., Suzuki, M.: Quantum annealing of the random-field Ising model by transverse ferromagnetic interactions. Phys. Rev. E 75, 051112 (2007)

    Article  ADS  Google Scholar 

  9. Amin, M.H.S.: Effect of local minima on adiabatic quantum optimization. Phys. Rev. Lett. 100(13), 130503 (2008)

    Article  ADS  Google Scholar 

  10. Smelyanskiy, V.N., Toussaint, U. v, Timucin, D.A.: Dynamics of quantum adiabatic evolution algorithm for Number Partitioning, arXiv: quant-ph/0202155

  11. Jörg, T., Krzakala, F., Kurchan, J., Maggs, A.C.: Simple glass models and their quantum annealing. Phys. Rev. Lett. 101(14), 147204 (2008)

    Article  ADS  Google Scholar 

  12. Young, A.P., Knysh, S., Smelyanskiy, V.N.: First-order phase transition in the quantum adiabatic algorithm. Phys. Rev. Lett. 101, 170503 (2008)

    Article  ADS  Google Scholar 

  13. Berman, G.P., Nesterov, A.I.: Non-Hermitian adiabatic quantum optimization. IJQI 7(8), 1469 (2009)

    MATH  Google Scholar 

  14. Nesterov, A.I., Berman, G.P.: Quantum search using non-Hermitian adiabatic evolution. Phys. Rev. A 86, 052316 (2012)

    Google Scholar 

  15. Nesterov, A.I., Beas Zepeda, J.C., Berman, G.P.: Non-Hermitian quantum annealing in the ferromagnetic Ising model. Phys. Rev. A 87, 042332 (2013)

    Google Scholar 

  16. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(5), 407 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Katsura, S.: Statistical mechanics of the anisotropic linear Heisenberg model. Phys. Rev. 127, 1508 (1962)

    Google Scholar 

  18. Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  19. McCoy, B.M.: Phys. Rev. 173, 531 (1968)

    Google Scholar 

  20. Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. II. Spin-correlation functions. Phys. Rev. A 3, 786 (1971)

    Google Scholar 

  21. Nesterov, A.I., Ovchinnikov, S.G.: Geometric phases and quantum phase transitions in open systems. Phys. Rev. E. 78(1), 015202(R) (2008)

  22. Landau, L., Lifshitz, E.M.: Quantum Mechanics. Pergamon, New York (1958)

    MATH  Google Scholar 

  23. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. A 137, 696 (1932)

    Google Scholar 

  24. Zhang, L., Kou, S.P., Deng, Y.: Quench dynamics of the topological quantum phase transition in the Wen-plaquette model. Phys. Rev. A 83, 062113 (2011)

    Google Scholar 

  25. Cherng, R.W., Levitov, L.S.: Entropy and correlation functions of a driven quantum spin chain. Phys. Rev. A 73, 043614 (2006)

    Article  ADS  Google Scholar 

  26. Cincio, L., Dziarmaga, J., Rams, M.M., Zurek, W.H.: Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model, cond-mat/0701768. Phys. Rev. A 75, 052321 (2007)

    Article  ADS  Google Scholar 

  27. Dziarmaga, J.: Dynamics of a quantum phase transition: Exact solution of the quantum Ising model. Phys. Rev. Lett. 95(24), 245701 (2005)

    Google Scholar 

  28. Erdélyi, A., Magnus, W., Oberhettinger, F.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  29. Ohzeki, M., Nishimori, H.: Quantum annealing: An introduction and new developments. J. Comp. Theor. Nanoscience 8, 963 (2011)

    Google Scholar 

  30. Ohzeki, M.: Quantum annealing with the Jarzynski equality. Phys. Rev. Lett. 105, 050401 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  31. Ohzeki, M., Nishimori, H.: Quantum annealing with Jarzynski equality. Comp. Phys. Comm. 182, 257 (2011)

    Google Scholar 

  32. Utsunomiya, S., Takata, K., Yamamoto, Y.: Mapping of Ising models onto injection-locked laser systems. Optics Express 19, 18091 (2011)

    Google Scholar 

  33. Takata, K., Utsunomiya, S., Yamamoto, Y.: Transient time of an Ising machine based on injection-locked laser network. New J. Phys. 14, 013052 (2012)

    Google Scholar 

Download references

Acknowledgments

The work by G.P.B. and A.R.B. was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. A.I.N. acknowledges the support from the CONACyT, Grant No. 15439. J.C.B.Z. acknowledges the support from the CONACyT, Grant No. 171014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Nesterov.

Appendices

Appendix A: One-dimensional antiferromagnetic Ising chain in a transverse field

We consider the 1-dimensional antiferromagnetic Ising chain in a transverse magnetic field governed by the following non-Hermitian Hamiltonian:

$$\begin{aligned} H= \frac{J}{2}\sum ^N_{n=1}\big (g \sigma ^x_n + \sigma ^z_n \sigma ^z_{n+1} - i{\delta }\big ( {1\!\!1}-\sigma ^{x}_n \big )\big ), \end{aligned}$$
(56)

with the periodic boundary condition, \({\varvec{\sigma }}_{N+1} ={\varvec{\sigma }}_1\). The external magnetic field is associated with the parameter, \(g\), the spontaneous decay is described by the parameter, \(\delta \).

The non-Hamiltonian in Eq. (56) can be diagonalized using the standard Jordan-Wigner transformation, following well-known procedures described in [1620] for Hermitian Hamiltonians. Note that, the diagonalization of the non-Hermitian Hamiltonians requires one to deal with some additional mathematical obstacles. For instance, in the non-Hermitian case the right and the left eigenvectors are different, and generally one has a complex energy spectrum.

The Jordan-Wigner transformation, which is mapping of a spin-1/2 system to a system of spinless fermions, is given by

$$\begin{aligned} \sigma ^x_n&= 1-2 c^\dagger _n c_n, \end{aligned}$$
(57)
$$\begin{aligned} \sigma ^y_n&= i\left( c^\dagger _n - c_n\right) \prod _{m<n}\left( 1-2 c^\dagger _m c_m\right) , \end{aligned}$$
(58)
$$\begin{aligned} \sigma ^z_n&= -\left( c_n + c^\dagger _n\right) \prod _{m<n}\left( 1-2 c^\dagger _m c_m\right) , \end{aligned}$$
(59)

in which the \(c_n\) are fermionic operators that satisfy anticommutation relations: \(\{c^\dagger _m,c_n\} = \delta _{mn}\) and \(\{c_m,c_n\}=\{c^\dagger _m,c^\dagger _n\}=0\). Applying these transformations, we obtain

$$\begin{aligned} H =\frac{J}{2}\sum ^N_{n=1}\big (c^\dagger _n c_{n+1 }+ c^\dagger _{n+1}c_{n}+ c_{n +1}c_{n }+ c^\dagger _{n} c^\dagger _{n+1}+ g(1-2 c^\dagger _n c_{n }) - 2i\delta c^\dagger _n c_{n } \big ).\nonumber \\ \end{aligned}$$
(60)

The periodic boundary condition imposed on the spin operators leads to the following boundary condition for the fermionic operators:

$$\begin{aligned} c_{N+1} = - \hbox {e}^{i\pi {{\fancyscript{N}}}_F} c_1, \end{aligned}$$
(61)

\({{\fancyscript{N}}}_F = \sum ^N_{n=1} c^\dagger _{n} c^\dagger _{n}\) being the total number of fermions. From Eq. (57) it follows that \({{\fancyscript{N}}}_F= N/2- S^x\), where \(S^x\) is the total \(x\)-component of the spins. For the particular choice of parameters, \(g=\delta =0\), we obtain, \(S^x =0\) and \({{\fancyscript{N}}}_F= N/2\). Thus, for \(S^x =0\) and \({{\fancyscript{N}}}_F= N/2\) we obtain periodic (antiperiodic) boundary conditions if \(N/2\) is odd (even). Note that since the parity of the fermions is conserved, the imposed boundary conditions are valid for all values of the parameters, \(g\) and \(\delta \).

Next, by applying the Fourier transformations,

$$\begin{aligned} c_n = \frac{\hbox {e}^{-i\pi /4}}{\sqrt{N}}\sum _k c_k \hbox {e}^{i2\pi kn/N}, \end{aligned}$$
(62)

we find that the Hamiltonian (60) can be recast in Fourier space as follows:

$$\begin{aligned} H= -\frac{J}{2}\sum _{k}\Big (2({\tilde{g}} - \cos \varphi _k)c^\dagger _k c_k- g + \sin \varphi _k(c^\dagger _k c^\dagger _{-k} + c_{-k} c_{k} ) \Big ), \end{aligned}$$
(63)

where \({\tilde{g}} = g+i\delta \) and \(\varphi _k = {2\pi k}/{N}\). For periodic boundary conditions, \(c_{N+1}=c_1\), the wave number, \(k\), takes the following discrete values:

$$\begin{aligned} k=-\frac{N}{2}, \ldots , 0,1, \ldots , \frac{N}{2}-1, \end{aligned}$$
(64)

and for antiperiodic boundary conditions, \(c_{N+1}=-c_1\), we obtain

$$\begin{aligned} k=\pm \frac{1}{2},\pm \frac{3}{2},\ldots , \pm \frac{N-1}{2}, \end{aligned}$$
(65)

In what follows, we impose the antiperiodic boundary conditions for the fermionic operators.

The Hamiltonian, \(H\), can be diagonalized using the generalized Bogoliubov transformation [14, 21]. Its spectrum is given by \(\varepsilon _{\pm }(k)= \varepsilon _{0} \pm \varepsilon _k\), in which \(\varepsilon _{0} = J\cos \varphi _k- iJ\delta \), and \( \varepsilon _k = J\sqrt{{\tilde{g}}^2 - 2{\tilde{g}}\cos \varphi _k +1}\). There are two (right) eigenstates for each \(k\),

$$\begin{aligned} |u_{+}(k)\rangle&= \left( \begin{array}{c} \cos \frac{\theta _k}{2} \\ \sin \frac{\theta _k}{2} \end{array}\right) , \end{aligned}$$
(66)
$$\begin{aligned} |u_{-}(k)\rangle&= \left( \begin{array}{c} -\sin \frac{\theta _k}{2}\\ \cos \frac{\theta _k}{2} \end{array}\right) , \end{aligned}$$
(67)

in which

$$\begin{aligned} \cos \theta _k&= \frac{ \cos \varphi _k - {\tilde{g}}}{\sqrt{{\tilde{g}}^2 - 2{\tilde{g}}\cos \varphi _k +1}}, \end{aligned}$$
(68)
$$\begin{aligned} \sin \theta _k&= - \frac{ \sin \varphi _k}{\sqrt{{\tilde{g}}^2 - 2{\tilde{g}}\cos \varphi _k +1}}, \end{aligned}$$
(69)

with \(\theta _k\) being a complex angle.

Since for each \(k\), the ground state lies into the two-dimensional Hilbert space spanned by \(|0\rangle _k |0\rangle _{-k}\) and \(|1\rangle _k |1\rangle _{-k}\), it is sufficient to project \(H\) onto this subspace. For a given value of \(k\), both of these states can be represented as a point on the complex two-dimensional sphere, \(S^2_c\). In this subspace, the Hamiltonian, \(H_k\), takes the form

$$\begin{aligned} {H}_k = {\varepsilon _0} {1}- {J} \left( \begin{array}{c@{\quad }c} {\tilde{g}}- \cos \varphi _k &{} \sin \varphi _k \\ \sin \varphi _k &{} -{\tilde{g}}+ \cos \varphi _k \\ \end{array} \right) . \end{aligned}$$
(70)

Its ground state can be written as a product of qubit-like states, \(|\psi _g\rangle = \bigotimes _{k}|u_{-}(k)\rangle \), so that:

$$\begin{aligned} |\psi _g\rangle = \bigotimes _{k} \Big (\cos \frac{\theta _k}{2}|0\rangle _k |0\rangle _{-k} -\sin \frac{\theta _k}{2}|1\rangle _k |1\rangle _{-k} \Big ), \end{aligned}$$
(71)

where, \(|0\rangle _k \), is the vacuum state of the mode \(c_k\), and \(|1\rangle _k \) is the excited state: \(|1\rangle _k =c^\dagger _k |0\rangle _k\).

For \(|{\tilde{g}}|\gg 1\), the ground state is paramagnetic with all spins oriented along the \(x\) axis. From Eq. (68), we obtain \(\cos \theta _k \rightarrow - 1\) as \(|{\tilde{g}}| \rightarrow \infty \). From here, it follows that, \(|u_{-}(k)\rangle \rightarrow \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right) \). Thus, the north pole of the complex Bloch sphere corresponds to the paramagnetic ground state. On the other hand, when \(|g|\ll 1\) there are two degenerate antiferromagnetic ground states with neighboring spins polarized in opposite directions along the \(z\)-axis. The real part of the complex energy reaches its minimum at the point defined by \(\cos \theta _k = 1\), and hence, the south pole of the complex sphere is related to the pure antiferromagnetic ground state.

Appendix B: Exact solution of the non-Hermitian Landau-Zener problem

The non-Hermitian Hamiltonian, \( {\fancyscript{H}}(t)\), projected on the two-dimensional subspace spanned by \(|k_1\rangle = { \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right) }\) and \(|k_0\rangle ={ \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right) }\), takes the form

$$\begin{aligned} {\fancyscript{H}}_k(t) = \varepsilon _0(t) {1\!\!1} -J \left( \begin{array}{c@{\quad }c} {\tilde{g}}(t)- \cos \varphi _k &{} \sin \varphi _k \\ \sin \varphi _k &{} -{\tilde{g}}(t)+ \cos \varphi _k \\ \end{array} \right) , \end{aligned}$$
(72)

where \(\varepsilon _0(t)= J\cos \varphi _k-iJ\delta (t)\) and \({\tilde{g}}(t) = g(t) + i\delta (t)\). We assume a linear dependence of the function, \({\tilde{g}}(t)\), on time:

$$\begin{aligned} {\tilde{g}}(t) = \left\{ \begin{array}{l} \gamma (\tau -t), \quad 0 \le t \le \tau \\ 0, \quad t > \tau \end{array} \right. , \end{aligned}$$
(73)

where, \(\gamma =(g+i\delta )/\tau \), and \(g,\,\delta \) are real parameters.

The general wave functions, \(|\psi _k\rangle \) and \(\langle \tilde{\psi }_k |\), satisfy the Schrödinger equation and its adjoint equation

$$\begin{aligned} i\frac{\partial }{\partial t}|\psi _k\rangle&= {\fancyscript{H}}_k(t)|\psi _k\rangle , \end{aligned}$$
(74)
$$\begin{aligned} -i\frac{\partial }{\partial t}\langle \tilde{\psi }_k |&= \langle \tilde{\psi }_k |{\fancyscript{H}}_k(t). \end{aligned}$$
(75)

Presenting \(|\psi _k(t)\rangle \) as a linear superposition

$$\begin{aligned} |\psi _k(t)\rangle = (u_k(t)|k_0\rangle + v_k(t)|k_1\rangle ) \hbox {e}^{-i\int \varepsilon _0(t)\hbox {d}t}, \end{aligned}$$
(76)

and inserting (76) into Eq. (74), we obtain

$$\begin{aligned} i\dot{u}_k&= J\big (({\tilde{g}} - \cos \varphi _k)\,u_k - \sin \varphi _k\, v_k\big ), \end{aligned}$$
(77)
$$\begin{aligned} i\dot{v}_k&= -J\big (\sin \varphi _k\, u_k +({\tilde{g}} - \cos \varphi _k)\,v_k \big ). \end{aligned}$$
(78)

Let \(z_k(t) = \hbox {e}^{i\pi /4}\sqrt{2J/\gamma }\big (\gamma (\tau -t)-\cos \varphi _k\big )\) be a new variable. Then, for new functions, \(u_k(t)= U_k(z_k)\) and \(v_k(t) = V_k(z_k)\), we obtain

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}z_k}U_k&= \frac{z_k}{2}U_k -\sqrt{i\nu _k}V_k, \end{aligned}$$
(79)
$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}z_k}V_k&= -\frac{z_k}{2}V_k -\sqrt{i\nu _k}U_k, \end{aligned}$$
(80)

where \(\nu _k= (J/2\gamma )\sin ^2 \varphi _k\), and the complex ‘time’ \(z_k\) runs from \(z_k(0) = \hbox {e}^{i\pi /4}\sqrt{2J/\gamma }\big (\gamma \tau -\cos \varphi _k\big )\) to \(z_k(\tau ) = -\hbox {e}^{i\pi /4}\sqrt{2J/\gamma }\cos \varphi _k\).

From Eqs. (79), (80), we obtain the second order Weber equations

$$\begin{aligned} \frac{\hbox {d}^2}{\hbox {d}z^2_k}U_k - \Big ( \frac{1}{2} + \frac{z_k^2}{4}+i\nu _k\Big )U_k&= 0, \end{aligned}$$
(81)
$$\begin{aligned} \frac{\hbox {d}^2}{\hbox {d}z^2_k}V_k + \Big (\frac{1}{2} -\frac{z_k^2}{4} -i\nu _k\Big )V_k&= 0. \end{aligned}$$
(82)

Solution of the Weber’s equations is given by the parabolic cylinder functions, \(D_{-i\nu _k}(\pm z)\) and \(D_{i\nu _k-1}(\pm i z)\).

We obtain the solutions of Eqs. (79), (80) in the form

$$\begin{aligned} U_{k}(z_k)&= B_k D_{i\nu _k}(iz_k) +{\sqrt{i\nu _k }} A_k D_{-i\nu _k-1}(z_k), \end{aligned}$$
(83)
$$\begin{aligned} V_{k}(z_k)&= A_k D_{-i\nu _k}(z_k) -i\sqrt{i\nu _k } B_k D_{i\nu _k-1}(iz_k)), \end{aligned}$$
(84)

where the constants, \(A_k\) and \(B_k\), are determined from the initial conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterov, A.I., Berman, G.P., Zepeda, J.C.B. et al. Non-Hermitian quantum annealing in the antiferromagnetic Ising chain. Quantum Inf Process 13, 371–389 (2014). https://doi.org/10.1007/s11128-013-0656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0656-z

Keywords

Navigation