Skip to main content
Log in

Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient scheme for generation of three-atom singlet state in a bimodal cavity based on quantum Zeno dynamics and the large detuning condition. The influence of decoherence induced by cavity decay and atomic spontaneous emission is also discussed by numerical calculation. The advantages of the scheme are that the initial input states of atoms are not entangled and the fidelity is insensitive to cavity decay and atomic spontaneous emission due to no exciting the cavity fields during the whole evolution and the large detuning condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?.   Physics (Long Island City, N. Y.) 47, 777–780 (1935)

    MATH  Google Scholar 

  2. Bell J.S.: On the Einstein-Podolsky-Rosen paradox. Physics (Long Island City, N. Y.) 1, 195–200 (1965)

    Google Scholar 

  3. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Gordon G., Rigolin G.: Generalized teleportation protocol. Phys. Rev. A 73, 042309(1–4) (2006)

    ADS  Google Scholar 

  5. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303(1–4) (2005)

    MathSciNet  ADS  Google Scholar 

  6. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Zhu A.D., Xia Y., Fan Q.B., Zhang S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338(1–4) (2006)

    ADS  Google Scholar 

  8. Xia Y., Song H.S.: Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Phys. Lett. A 364, 117–122 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302(1–3) (2002)

    Article  ADS  Google Scholar 

  10. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317(1–6) (2003)

    ADS  Google Scholar 

  11. Gisin N., Massar S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1993)

    Article  ADS  Google Scholar 

  12. Zheng S.B., Guo G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  13. Deng F.G., Long G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311(1–7) (2004)

    ADS  Google Scholar 

  14. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  15. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314(1–12) (2000)

    ADS  Google Scholar 

  16. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  17. Cirac J.I., Zoller P.: Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, R2799–R2802 (1994)

    Article  ADS  Google Scholar 

  18. Gerry C.C.: Preparation of multiatom entangled states through dispersive atom-cavity-field interactions. Phys. Rev. A 53, 2857–2860 (1996)

    Article  ADS  Google Scholar 

  19. Zheng S.B.: One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. Phys. Rev. Lett. 87, 230404(1–4) (2001)

    ADS  Google Scholar 

  20. Lange W., Kimble H.J.: Dynamic generation of maximally entangled photon multiplets by adiabatic passage. Phys. Rev. A 61, 063817(1–20) (2000)

    Article  ADS  Google Scholar 

  21. Xia Y., Song J., Song H.S.: Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors. Appl. Phys. Lett. 92, 021127(1–3) (2008)

    ADS  Google Scholar 

  22. Hagley E., Maitre X., Nogues G., Wunderlich C., Brune M., Raimond J.M., Hroche S.: Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997)

    Article  ADS  Google Scholar 

  23. Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J., Haroche S.: Step-by-Step engineered multiparticle entanglement. Science 288, 2024 (2000)

    Article  ADS  Google Scholar 

  24. Song J., Xia Y., Song H.S., Guo J.L., Nie J.: Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Europhys. Lett. 80, 60001(1–6) (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. Feng X.L., Zhang Z.M., Li X.D., Li S.Q., Gong S.Q., Xu Z.Z: Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett. 90, 217902(1–4) (2003)

    Article  ADS  Google Scholar 

  26. Yu C.S., Yi X.X., Song H.S., Mei D.: Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms. Phys. Rev. A 75, 044301(1–4) (2007)

    ADS  Google Scholar 

  27. Yu C.S., Yi X.X., Song H.S., Mei D.: Preparation of a stable and maximally entangled state of two distant qutrits trapped in separate cavities. Eur. Phys. J. D 48, 411–415 (2008)

    Article  ADS  Google Scholar 

  28. Cabrillo C., Cirac J.I., Garcia-Fernandez P., Zoller P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999)

    Article  ADS  Google Scholar 

  29. Bose S., Knight P.L., Plenio M.B., Vedral V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999)

    Article  ADS  Google Scholar 

  30. Simon C., Irvine W.T.M.: Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405(1–4) (2003)

    ADS  Google Scholar 

  31. Zou X., Pahlke K., Mathis W.: Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay. Phys. Rev. A 68, 024302(1–4) (2003)

    ADS  Google Scholar 

  32. Duan L.M., Kimble H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601(1–4) (2003)

    Article  ADS  Google Scholar 

  33. Su X., Tan A., Jia X., Zhang J., Xie C., Peng K.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502(1–4) (2007)

    Article  ADS  Google Scholar 

  34. Kim H., Cheong Y.W., Lee H.W.: Generalized measurement and conclusive teleportation with nonmaximal entanglement. Phys. Rev. A 70, 012309(1–7) (2004)

    ADS  Google Scholar 

  35. Zou X.B., Li K., Guo G.C.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305(1–4) (2006)

    ADS  Google Scholar 

  36. Zou X.B., Zhang S.L., Li K., Guo G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302(1–4) (2007)

    ADS  Google Scholar 

  37. Cabello A.: N-Particle N-Level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402(1–4) (2002)

    Article  MathSciNet  ADS  Google Scholar 

  38. Mermin N.D.: Quantum mechanics vs local realism near the classical limit: a Bell inequality for spins. Phys. Rev. D 22, 356–361 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  39. Cabello A.: Ladder proof of nonlocality without inequalities and without probabilities. Phys. Rev. A 58, 1687–1693 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. Zanardi P., Rasetti M.: Noiseless Quantum Codes. Phys. Rev. Lett. 79, 3306–3309 (1997)

    Article  ADS  Google Scholar 

  41. Jin G.S., Li S.S., Feng S.L., Zheng H.Z.: Generation of a supersinglet of three three-level atoms in cavity QED. Phys. Rev. A 71, 034307 (2005)

    Article  ADS  Google Scholar 

  42. Lin G.W., Ye M.Y., Chen L.B., Du Q.H., Lin X.M.: Generation of the singlet state for three atoms in cavity QED. Phys. Rev. A 76, 014308(1–4) (2007)

    MathSciNet  ADS  Google Scholar 

  43. Shao X.Q., Wang H.F., Chen L., Zhang S., Zhao Y.F., Yeon K.H.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J.Phys. 12, 023040(1–14) (2010)

    Article  ADS  Google Scholar 

  44. Misra B., Sudarshan E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  45. Facchi P., Gorini V., Marmo G., Pascazio S., Sudarshan E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12–19 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Facchi P., Pascazio S., Scardicchio A., Schulman L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108(1–5) (2001)

    Article  ADS  Google Scholar 

  47. Facchi P., Pascazio S.: Quantum Zeno and inverse quantum Zeno effects. Prog. Opt. 42, 147–217 (2001)

    Article  Google Scholar 

  48. Pachos J., Walther H.: Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903(1–4) (2002)

    Article  ADS  Google Scholar 

  49. Pachos J.K., Beige A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817(1–9) (2004)

    Article  ADS  Google Scholar 

  50. Franson J.D., Jacobs B.C., Pittman T.B.: Quantum computing using single photons and the Zeno effect. Phys. Rev. A 70, 062302(1–13) (2004)

    MathSciNet  ADS  Google Scholar 

  51. You, H., Franson, J.D.: Theoretical comparison of quantum Zeno gates and nonlinear phase gates. arXiv:1008.1513(1-14) (to appear in Quantum Information Processing)

  52. Shao X.Q., Wang H.F., Chen L., Zhang S., Yeon K.H.: One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 374, 28–33 (2009)

    Article  ADS  MATH  Google Scholar 

  53. Zhang S., Shao X.Q., Chen L., Zhao Y.F., Yeon K.H.: Robust \({\sqrt{\rm swap}}\) gate on nitrogen-vacancy centres via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 44, 075505(1–5) (2011)

    ADS  Google Scholar 

  54. Shi Z.C., Xia Y., Song J., Song H.S.: Atomic quantum state transferring and swapping via quantum Zeno dynamics. J. Opt. Soc. Am. B 28, 2909–2914 (2011)

    Article  ADS  Google Scholar 

  55. Shi Z.C., Xia Y., Song J., Song H.S.: One-step implementation of the Fredkin gate via quantum Zeno dynamics. Quantum Inf. Comput. 12, 0215–0230 (2012)

    MathSciNet  Google Scholar 

  56. Wang X.B., You J.Q., Nori F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339(1–6) (2008)

    ADS  Google Scholar 

  57. Wen A.L., Guang Y.H.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322(1–6) (2011)

    ADS  Google Scholar 

  58. Shi Z.C., Xia Y., Song J., Song H.S.: Effective scheme for generation of two-dimensional cluster states via quantum Zeno dynamics. Eur. Phys. J. D 66, 11(1–8) (2012)

    ADS  Google Scholar 

  59. Facchi P., Pascazio S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401(1–4) (2002)

    Article  MathSciNet  ADS  Google Scholar 

  60. James D.F., Jerke J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625–632 (2007)

    Article  ADS  Google Scholar 

  61. Spillane S.M., Kippenberg T.J., Vahala K.J., Goh K.W., Wilcut E., Kimble H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817(1–10) (2005)

    Article  ADS  Google Scholar 

  62. Buck J.R., Kimble H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806(1–11) (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, ZC., Xia, Y., Song, J. et al. Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf Process 12, 411–424 (2013). https://doi.org/10.1007/s11128-012-0382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0382-y

Keywords

Navigation