Skip to main content
Log in

Hitting time of quantum walks with perturbation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy’s work and the perturbation bounds with Weyl’s perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is bounded from above by the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lovász L., Vempala S.: Simulated annealing in convex bodies and an O*(n 4) volume algorithm. J. Comput. Syst. Sci. 72(2), 392–417 (2006)

    Article  MATH  Google Scholar 

  2. Jerrum M., Sinclair A., Vigoda E.: A polynomial-time approximation algorithm for the permanent of a matrix non-negative entries. J. ACM 51(4), 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jerrum M., Sinclair A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22, 1087–1116 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezáková I., Štefankovič D., Vazirani V., Vigoda E.: Accelerating simulated annealing for the permanent and combinatorial counting problems. SIAM J. Comput. 37(5), 1429–1454 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  6. Jafarizadeh M.A., Salimi S.: Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix. Ann. Phys. 322(5), 1005–1033 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Childs A.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581–603 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Santha, M.: Quantum walk based search algorithms. In: Proceedings of 5th Theory and Applications of Models of Computation (TAMC08), Lectures Notes on Computer Science, vol. 4978, pp. 31–46 (2008)

  9. Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

  11. Chiang C., Nagaj D., Wocjan P.: Efficient circuits for the quantum walks. QIC 10(5&6), 0420–0434 (2010)

    MathSciNet  Google Scholar 

  12. Ipsen I., Nadler B.: Refined perturbation bounds for eigenvalues of Hermitian and non-Hermitian matrices. SIAM J. Matrix Anal. Appl. 31(1), 40–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cho G., Meyer C.: Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra Appl. 335(1–3), 137–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub G., Loan C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Parlett B.: The Symmetric Eigenvalue Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  16. Bauer F., Fike C.: Norms and exclusion theorems. Numer. Math. 2, 137–141 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eisenstat S., Ipsen I.: Three absolute perturbation bounds for matrix eigenvalues imply relative bounds. SIAM J. Matrix Anal. Appl. 20(1), 149–158 (1999)

    Article  MathSciNet  Google Scholar 

  18. Johnstone I.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29(2), 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magniez, F., Nayak, A., Richter, P., Santha, M.: On the hitting times of quantum versus random walks. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 86–95 (2009)

  20. Bhatia R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Fu Chiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CF., Gomez, G. Hitting time of quantum walks with perturbation. Quantum Inf Process 12, 217–228 (2013). https://doi.org/10.1007/s11128-012-0368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0368-9

Keywords

Navigation