Abstract
Ghost images are obtained by correlating the output of a single-pixel (bucket) photodetector—which collects light that has been transmitted through or reflected from an object—with the output from a high spatial-resolution scanning photodetector or photodetector array whose illumination has not interacted with that object. The term “ghost image” is apt because neither detector’s output alone can yield an image: the bucket detector has no spatial resolution, while the high spatial-resolution detector has not viewed the object. The first ghost imaging experiment relied on the entangled signal and idler outputs from a spontaneous parametric downconverter, and hence the image was interpreted as a quantum phenomenon. Subsequent theory and experiments showed, however, that classical correlations can be used to form ghost images. For example, ghost images can be formed with pseudothermal light, for which quantum mechanics is not required to characterize its photodetection statistics. This paper presents an overview of the physics of ghost imaging. It clarifies and unites two disparate interpretations of pseudothermal ghost imaging—two-photon interference and classical intensity-fluctuation correlations—that had previously been thought to be conflicting. It also reviews recent work on ghost imaging in reflection, ghost imaging through atmospheric turbulence, computational ghost imaging, and two-color ghost imaging.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Pittman T.B., Shih Y.H., Strekalov D.V., Sergienko A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995)
Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Role of entanglement in two-photon imaging. Phys. Rev. Lett. 87, 123602 (2001)
Bennink R.S., Bentley S.J., Boyd R.W.: “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002)
Gatti A., Brambilla E., Lugiato L.A.: Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm. Phys. Rev. Lett. 90, 133603 (2003)
Bennink R.S., Bentley S.J., Boyd R.W., Howell J.C.: Quantum and classical coincidence imaging. Phys. Rev. Lett. 92, 033601 (2004)
Howell J.C., Bennink R.S., Bentley S.J., Boyd R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)
Reid M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989)
Gatti A., Brambilla E., Bache M., Lugiato L.A.: Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004)
Gatti A., Brambilla E., Bache M., Lugiato L.A.: Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004)
Cai Y., Zhu S.-Y.: Ghost imaging with incoherent and partially coherent light radiation. Phys. Rev. E 71, 056607 (2005)
Cai Y., Zhu S.-Y.: Ghost interference with partially coherent light radiation. Opt. Lett. 29, 2716–2718 (2004)
Valencia A., Scarcelli G., D’Angelo M., Shih Y.: Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005)
Ferri F., Magatti D., Gatti A., Bache M., Brambilla E., Lugiato L.A.: High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005)
Scarcelli G., Berardi V., Shih Y.: Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?. Phys. Rev. Lett. 96, 063602 (2006)
Erkmen B.I., Shapiro J.H.: Unified theory of ghost imaging with Gaussian-state light. Phys. Rev. A 77, 043809 (2008)
Shapiro J.H.: Computational ghost imaging. Phys. Rev. A 78, 061802(R) (2008)
Shapiro, J.H.: The quantum theory of optical communications. IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569 (2009); Shapiro, J.H. Corrections to “The quantum theory of optical communications” IEEE J. Sel. Top. Quantum Electron. 16, 698 (2010)
Erkmen B.I., Shapiro J.H.: Ghost imaging: from quantum to classical to computational. Adv. Opt. Photon. 2, 405–450 (2010)
Meyers R., Deacon K.S., Shih Y.: Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77, 041801(R) (2008)
Meyers R.E., Deacon K.S., Shih Y.: Quantum imaging of an obscured object by measurement of reflected photons. Proc. SPIE 7092, 70920E (2008)
Meyers R.E., Deacon K.S.: Quantum ghost imaging experiments at ARL. Proc. SPIE 7815, 78150I (2010)
Cheng J.: Ghost imaging through turbulent atmosphere. Opt. Express 17, 7916–7921 (2009)
Hardy N.D., Shapiro J.H.: Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio. Proc. SPIE 7815, 78150P (2010)
Hardy, N.D.: Analyzing and improving image quality in reflective ghost imaging. S.M. thesis, MIT (2011)
Bromberg Y., Katz O., Silberberg Y.: Ghost imaging with a single detector. Phys. Rev. A 79, 053840 (2009)
Katz O., Bromberg Y., Silberberg Y.: Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009)
Rubin M.H., Shih Y.: Resolution of ghost imaging for nondegenerate spontaneous parametric downconversion. Phys. Rev. A 78, 033836 (2008)
Chan K.W.C., O’Sullivan M.N., Boyd R.W.: Two-color ghost imaging. Phys. Rev. A 79, 033808 (2009)
Karmakar S., Shih Y.: Observation of two-color ghost imaging. Proc. SPIE 7815, 78150R (2010)
Erkmen B.I., Shapiro J.H.: Signal-to-noise ratio of Gaussian-state ghost imaging. Phys. Rev. A 79, 023833 (2009)
O’Sullivan M.N., Chan K.W.C., Boyd R.W.: Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. Phys. Rev. A 82, 053803 (2010)
Chan K.W.C., O’Sullivan M.N., Boyd R.W.: High-order thermal ghost imaging. Opt. Lett. 34, 3343–3345 (2009)
Chan K.W.C., O’Sullivan M.N., Boyd R.W.: Optimization of thermal ghost imaging: high-order correlations vs. background subtraction. Opt. Express 18, 5562–5573 (2010)
Wong F.N.C., Kim T., Shapiro J.H.: Efficient generation of polarization-entangled photons in a nonlinear crystal. Laser Phys. 16, 1517–1524 (2006)
Le Gouët J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Classical low-coherence interferometry based on broadband parametric fluorescence and amplification. Opt. Express 17, 17874 (2009)
Yuen H.P., Shapiro J.H.: Optical communication with two-photon coherent states—Part III: Quantum measurements realizable with photoemissive detectors. IEEE Trans. Inf. Theory 26, 78–92 (1980)
Wozencraft J.M., Jacobs I.M.: Principles of Communication Engineering, pp. 205–206. Wiley, New York (1965)
Shapiro J.H., Sun K.-X.: Semiclassical versus quantum behavior in fourth-order interference. J. Opt. Soc. Am. B 11, 1130–1141 (1994)
Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)
Shapiro J.H., Shakeel A.: Optimizing homodyne detection of quadratures-noise squeezing via local-oscillator selection. J. Opt. Soc. Am. B 14, 232–249 (1997)
Saleh B.E.A., Abouraddy A.R., Sergienko A.V., Teich M.C.: Duality between partial coherence and partial entanglement. Phys. Rev. A 62, 043816 (2000)
Erkmen B.I., Shapiro J.H.: Optical coherence theory for phase-sensitive light. Proc. SPIE 6305, 63050G (2006)
Yuen H.P., Shapiro J.H.: Optical communication with two-photon coherent states—Part I: quantum state propagation and quantum noise reduction. IEEE Trans. Inf. Theory 24, 657–668 (1978)
Shih Y.: Quantum imaging. IEEE J. Sel. Top. Quantum Electron. 13, 1016–1030 (2007)
Goodman J.W.: Speckle Phenomena in Optics: Theory and Applications. Roberts & Co., Englewood, CO (2007)
Glauber R.J.: Optical coherence and photon statistics. In: DeWitt, C., Blandin, A., Cohen-Tannoudji, C. (eds) Quantum Optics and Electronics, Gordon and Breach, New York (1965)
Tatarski V.I.: Wave Propagation in a Turbulent Medium. Dover Publications, New York (1961)
Strohbehn, J.W. (eds): Laser Beam Propagation in the Atmosphere. Springer, Berlin (1978)
Ishimaru A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)
Shapiro J.H., Capron B.A., Harney R.C.: Imaging and target detection with a heterodyne-reception optical radar. Appl. Opt. 20, 3292–3313 (1981)
Dixon P.B., Howland G., Chan K.W.C., O’Sullivan-Hale C., Rodenburg B., Hardy N.D., Shapiro J.H., Simon D.S., Sergienko A.V., Boyd R.W., Howell J.C.: Quantum ghost imaging through turbulence. Phys. Rev. A 83, 051803(R) (2011)
Candès E., Wakin M.B.: Compressive sampling. IEEE Signal Proc. Mag. 25, 21–30 (March 2008)
Duarte M.F., Davenport M.A., Takhar D., Laska J.N., Sun T., Kelly K.F., Baraniuk R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Proc. Mag. 25, 83–91 (March 2008)
Jack B., Leach J., Romero J., Franke-Arnold S., Ritsch-Marte M., Barnett S.M., Padgett M.J.: Holographic ghost imaging and the violation of a Bell inequality. Phys. Rev. Lett. 103, 083602 (2009)
Malik M., Shin H., O’Sullivan M., Zerom P., Boyd R.W.: Quantum ghost image discrimination with correlated photon pairs. Phys. Rev. Lett. 104, 163602 (2010)
Liu Q., Chen X.-H., Luo K.-H., Wu W., Wu L.-A.: Role of multiphoton bunching in high-order ghost imaging with thermal light sources. Phys. Rev. A 79, 053844 (2009)
Ou L.-H., Kuang L.-M.: Ghost imaging with third-order correlated thermal light. J. Phys B 40, 1833–1844 (2007)
Bache M., Brambilla E., Gatti A., Lugiato L.A.: Ghost imaging using homodyne detection. Phys. Rev. A 70, 023823 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the U.S. Army Research Office MURI grant W911NF-05-0197.
Rights and permissions
About this article
Cite this article
Shapiro, J.H., Boyd, R.W. The physics of ghost imaging. Quantum Inf Process 11, 949–993 (2012). https://doi.org/10.1007/s11128-011-0356-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0356-5