Skip to main content
Log in

Negativity fonts, multiqubit invariants and four qubit maximally entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, we introduced negativity fonts as the basic units of multipartite entanglement in pure states. We show that the relation between global negativity of partial transpose of N−qubit state and linear entropy of reduced single qubit state yields an expression for global negativity in terms of determinants of negativity fonts. Transformation equations for determinants of negativity fonts under local unitaries (LU’s) are useful to construct LU invariants such as degree four and degree six invariants for four qubit states. The difference of squared negativity and N−tangle is an N qubit invariant which contains information on entanglement of the state caused by quantum coherences that are not annihilated by removing a single qubit. Four qubit invariants that detect the entanglement of specific parts in a four qubit state are expressed in terms of three qubit subsystem invariants. Numerical values of invariants bring out distinct features of several four qubit states which have been proposed to be the maximally entangled four qubit states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zyczkowski K., Horodecki P., Sanpera A., Lewenstein M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. 65, 032314 (2002)

    Article  ADS  Google Scholar 

  3. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. Verstraete F., Dehaene J., DeMoor B., Verschelde H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  5. Verstraete F., Dehaene J., De Moor B.: Normal forms and entanglement measures for multipartite quantum states. Phys. Rev. A 68, 012103 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. Acin A., Andrianov A., Costa L., Jane E., Latorre J.I., Tarrach R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  7. Acin A., Andrianov A., Jane E., Latorre J.I., Tarrach R.: Three-qubit pure-state canonical forms. J. Phys. A 34, 6725 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Miyake A.: Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67, 012108 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. Miyake A., Verstraete F.: Multipartite entanglement in 2 × 2 × n quantum systems. Phys. Rev. A 69, 012101 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. Vidal G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  11. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  MATH  ADS  Google Scholar 

  12. Coffman V., Kundu J., Wooters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  13. Gingrich R.M.: Properties of entanglement monotones for three-qubit pure states. Phys. Rev. A 65, 052302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  14. Luque J.G., Thibon J.Y.: Polynomial invariants of four qubits. Phys. Rev. A 67, 042303 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. Luque J.-G., Thibon J.-Y.: Algebraic invariants of five qubits. J. Phys. A 39, 371 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Wong A., Christensen N.: Potential multiparticle entanglement measure. Phys. Rev. A 63, 044301 (2001)

    Article  ADS  Google Scholar 

  17. Li D. et al.: Simple criteria for the SLOCC classification. Phys. Lett. A 359, 428–437 (2006)

    Article  MATH  ADS  Google Scholar 

  18. Li D., Li X., Huang H., Li X.: Stochastic local operations and classical communication invariant and the residual entanglement for n qubits. Phys. Rev. A 76, 032304 (2007)

    Article  ADS  Google Scholar 

  19. Li X., Li D.: Relationship between the N−tangle and the residual entanglement of even N qubits. Quantum Inf. Comput. 10, 1018 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Osterloh A., Siewert J.: Constructing N−qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    Article  ADS  Google Scholar 

  21. Osterloh A., Siewert J.: Entanglement monotones and maximally entangled states in multipartite qubit system. Int. J. Quant. Inf. 4, 531 (2006)

    Article  MATH  Google Scholar 

  22. Chterental, O., Djokovic, D.: Normal forms and tensor ranks of pure states of four qubits. In: Linear Algebra Research Advances, Chap. 4, p. 133. Nova Science, Hauppauge, N.Y. (2007)

  23. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 8 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Sharma S.S., Sharma N.K.: Four-tangle for pure states. Phys. Rev. A 82, 012340 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  26. Sharma S.S., Sharma N.K.: Local unitary invariants for N−qubit pure states. Phys. Rev. A 82, 052340 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. Sharma S.S., Sharma N.K.: Partial K-way negativities of pure four-qubit entangled states. Phys. Rev. A 79, 062323 (2009)

    Article  ADS  Google Scholar 

  28. Heydari H.: Entanglement monotones for multi-qubit states based on geometric invariant theory.. J. Math. Phys. 47, 012103 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Sharma S.S., Sharma N.K.: Two-way and three-way negativities of three-qubit entangled states. Phys. Rev. A 76, 012326 (2007)

    Article  ADS  Google Scholar 

  30. Sharma S.S., Sharma N.K.: Partial K-way negativities and three-tangle for three-qubit states. Phys. Rev. A 78, 012113 (2008)

    Article  ADS  Google Scholar 

  31. Viehmann O., Eltschka C., Siewert J.: Polynomial invariants for discrimination and classification of four-qubit entanglement. Phys. Rev. A 83, 052330 (2011)

    Article  ADS  Google Scholar 

  32. Greenberger D., Horne M., Zeilinger A.: Going beyond Bell’s theorem. In: Kaftos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer, Dordrecht (1989)

    Google Scholar 

  33. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  34. Ye M.-Y., Lin X.-M.: A genuine four-partite entangled state. Phys. Lett. A 372, 4157–4159 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Higuchi A., Sudbery A.: How entangled can two couples get?. Phys. Lett. A 273, 213 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Brierley S., Higuchi A.: On maximal entanglement between two pairs in four-qubit pure states. J. Phys. A 40, 8455 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Gour G., Wallach N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  39. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  40. Brown I.D.K., Stepney S., Sudbery A., Braunstein S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shelly Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.S., Sharma, N.K. Negativity fonts, multiqubit invariants and four qubit maximally entangled states. Quantum Inf Process 11, 1695–1714 (2012). https://doi.org/10.1007/s11128-011-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0324-0

Keywords

Navigation