Skip to main content
Log in

Classical-processing and quantum-processing signal separation methods for qubit uncoupling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abragam A.: Les principes du magnétisme nucléaire. PUF/INSTN, Paris/Saclay (1961)

    Google Scholar 

  2. Abragam A., Bleaney B.: Résonance paramagnétique électronique des ions de transition. PUF/INSTN, Paris/Saclay (1971)

    Google Scholar 

  3. Abragam A., Goldman M.: Nuclear Magnetism: Order and Disorder. Clarendon University Press, Oxford (1982)

    Google Scholar 

  4. Benioff P.: Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581–1585 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett C.H.: Thermodynamics of computation—a review. Int. J. Theor. Phys 21, 905–940 (1982)

    Article  Google Scholar 

  6. Bennett C.H., Shor P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett C.H., Hayden P., Leung D.W., Shor P.W., Winter A.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51, 56–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bohn H.G., Zinn W., Dorner B., Kollmar A.: Neutron scattering of spin waves and exchange interactions in ferromagnetic EuS. Phys. Rev. B 22, 5447–5452 (1980)

    Article  ADS  Google Scholar 

  9. Bouwmeester D., Ekert A., Zeilinger A.: The Physics of Quantum Information. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  10. Cardoso J.-F.: Blind signal separation: statistical principles. Proc. IEEE 86, 2009–2025 (1998)

    Article  Google Scholar 

  11. Chuang I.L., Nielsen M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997)

    Article  ADS  Google Scholar 

  12. Cichocki A., Amari S.-I.: Adaptive Blind Signal and Image Processing. Learning Algorithms and Applications. Wiley, Chichester (2002)

    Google Scholar 

  13. Comon P., Jutten C. (eds.): Handbook of Blind Source Separation. Independent Component Analysis and Applications. Academic Press, Oxford (2010)

    Google Scholar 

  14. Deutsch D.: Quantum theory, the Church-Turting principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MATH  Google Scholar 

  15. Deville A., Blanchard C., Gaillard B., Gayda J.P.: Relaxation study of a 3d5 ion in T d symmetry: Mn2+ in ZnS. J. Phys. Paris 36, 1151–1163 (1975)

    Article  Google Scholar 

  16. Deville Y., Damour J., Charkani N.: Multi-tag radio-frequency identification systems based on new blind source separation neural networks. Neurocomputing 49, 369–388 (2002)

    Article  Google Scholar 

  17. Deville, Y., Deville, A.: Blind separation of quantum states: estimating two qubits from an isotropic Heisenberg spin coupling model. In: Proceedings of the 7th International Conference on Independent Component Analysis and Signal Separation (ICA 2007) LNCS vol. 4666, pp 706–713 (2007), Erratum: replace two terms E{r i }E{q i } in (33) of this ICA 2007 paper by E{r i q i }, since q i depends on r i : see (23) in our ICASSP 2008 paper

  18. Deville, Y., Deville, A.: Maximum likelihood blind separation of two quantum states (qubits) with cylindrical-symmetry Heisenberg spin coupling. Proceedings of the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), pp 3497–3500 (2008)

  19. Dévoret M.H., Schoelkopf R.J.: Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000)

    Article  Google Scholar 

  20. Feynman R.P.: Simulating physics with computers. Int. J. Theor. Phys 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  21. Feynman, R.P.: Feynman lectures on computation. In: Hey, T., Allen, R.W. (eds.) Perseus Publishing, Cambridge (1996)

  22. Fletcher A.S., Shor P.W., Win M.Z.: Channel-adapted quantum error correction for the amplitude damping channel. IEEE Trans. Inf. Theory 54, 5705–5718 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herpin A.: Théorie du magnétisme. PUF/INSTN, Paris/Saclay (1968)

    Google Scholar 

  24. Hyvärinen A., Karhunen J., Oja E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  25. Jutten C., Karhunen J.: Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures. Int. J. Neural Syst. 14, 267–292 (2004)

    Article  Google Scholar 

  26. King C., Ruskai M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Köhler, J., Schmidt, J.: Perspectives of single-molecule magnetic-resonance spectroscopy. C.R. Acad. Sci. Paris, t. 324, Série II b, 373–388 (1997)

  28. Makino, S., Lee, T.-W., Sawada, H. (eds): Blind Speech Separation. Springer, Dordrecht (2007)

    Google Scholar 

  29. Miller J.: Optical absorption of single molecules observed by three groups. Phys. Today 63, 20–22 (2010)

    ADS  Google Scholar 

  30. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Pothier H., Lafarge P., Urbina C., Estève D., Dévoret M.H.: Single electron pump based on charging effects. Europhys. Lett. 7, 249–254 (1992)

    Article  ADS  Google Scholar 

  32. Principe, J.C., Cerutti, S., Amari, S. (eds.): Special topic section on advances in statistical signal processing for medicine. IEEE Trans. Biomed. Eng. 47, 565–599 (2000)

  33. Roger G., More C., Blanc C.: Evidence for a spin-lattice relaxation process with two optical phonons : Mn2+ in ZnS. J. Phys. Paris 41, 169–175 (1980)

    Article  Google Scholar 

  34. Rugar D., Budakian R., Mamin H.J., Chui B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

    Article  ADS  Google Scholar 

  35. Shor P.W.: Progress in quantum algorithms. Quantum Inf. Process 3, 5–13 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tans S.J., Dévoret M.H., Dal H., Thess A., Smalley R.E., Geerligs L.J., Dekker C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    Article  ADS  Google Scholar 

  37. Vandersypen L.M.K., Chuang I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys 76, 1037–1069 (2004)

    Article  ADS  Google Scholar 

  38. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics Ch. 5. Princeton University Press, Princeton, Chichester, (1955 to 1996: 12th edn.), transl. of the German edition, Springer (1932)

  39. Wrachtrup J., Von Borczykowski C., Bernard J., Orrit M., Brown R.: Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Deville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deville, Y., Deville, A. Classical-processing and quantum-processing signal separation methods for qubit uncoupling. Quantum Inf Process 11, 1311–1347 (2012). https://doi.org/10.1007/s11128-011-0273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0273-7

Keywords

Navigation