Skip to main content
Log in

On the efficiency of quantum algorithms for Hamiltonian simulation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study algorithms simulating a system evolving with Hamiltonian \({H = \sum_{j=1}^m H_j}\) , where each of the H j , j = 1, . . . ,m, can be simulated efficiently. We are interested in the cost for approximating \({e^{-iHt}, t \in \mathbb{R}}\) , with error \({\varepsilon}\) . We consider algorithms based on high order splitting formulas that play an important role in quantum Hamiltonian simulation. These formulas approximate e iHt by a product of exponentials involving the H j , j = 1, . . . ,m. We obtain an upper bound for the number of required exponentials. Moreover, we derive the order of the optimal splitting method that minimizes our upper bound. We show significant speedups relative to previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R.P.: Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Lloyd S.: Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Kassal I., Jordan S.P., Love P.J., Mohseni M., Aspuru-Guzik A.: Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Nat. Acad. Sci. 105, 18681 (2008)

    Article  ADS  Google Scholar 

  4. Buluta I., Nori F.: Quantum simulators. Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  5. Zalka C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. A 454, 313 (1998)

    Article  ADS  MATH  Google Scholar 

  6. Zalka C.: Efficient simulation of quantum systems by quantum computers. Fortschritte der Physik 46, 877 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 20–29 (2003)

  8. Farhi, E., Goldstone, J., Gutmann, S., Sipser M.: Quantum computation by adiabatic evolution, quant-ph/0001106 (2000)

  9. Childs A., Farhi E., Gutmann S.: An example of the difference between quantum and classical random walks. J. Quant. Inf. Proc. 1, 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  10. Farhi, E., Goldstone, J., Gutmann, S.: A Quantum algorithm for the Hamiltonian NAND Tree, quant-ph/0702144 (2007)

  11. Childs A.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. Childs A.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys 294, 581–603 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Berry D.W., Ahokas G., Cleve R., Sanders B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Suzuki M.: Fractal decomposition of exponential operators with application to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  15. Suzuki M.: General theory of fractal path integrals with application to many-body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Wiebe N., Berry D., Hoyer P., Sanders B.C.: Higher order decompositions of ordered operator exponentials. J. Phys. A: Math. Theor. 43, 065203 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  17. Klar B.: Bounds on tail probabilities of discrete distributions. Probab. Eng. Inf. Sci. 14, 161–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abramowitz M., Stegun A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anargyros Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papageorgiou, A., Zhang, C. On the efficiency of quantum algorithms for Hamiltonian simulation. Quantum Inf Process 11, 541–561 (2012). https://doi.org/10.1007/s11128-011-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0263-9

Keywords

Navigation