Skip to main content
Log in

Decoherence in rf SQUID qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We report measurements of coherence times of an rf SQUID qubit using pulsed microwaves and rapid flux pulses. The modified rf SQUID, described by an double-well potential, has independent, in situ, controls for the tilt and barrier height of the potential. The decay of coherent oscillations is dominated by the lifetime of the excited state and low frequency flux noise and is consistent with independent measurement of these quantities obtained by microwave spectroscopy, resonant tunneling between fluxoid wells and decay of the excited state. The oscillation’s waveform is compared to analytical results obtained for finite decay rates and detuning and averaged over low frequency flux noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ithier, G., Collin, E., Joyez, P., Meeson, P.J., Vion, D., Esteve, D., Chiarello, F., Shnirman, A., Makhlin, Y., Schriefl, J., Schön, G.: Decoherence in a superconducting quantum bit circuit. Phys. Rev. B (Condensed Matter and Materials Physics) 72(13), 134519 (2005). doi:10.1103/PhysRevB.72.134519. http://link.aps.org/abstract/PRB/v72/e134519

    Google Scholar 

  2. Steffen, M., Ansmann, M., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313(5792), 1423–1425(2006). doi:10.1126/science.1130886. http://www.sciencemag.org/cgi/content/abstract/313/5792/1423

    Google Scholar 

  3. Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., Yu, C.C.: Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95(21), 210503 (2005). doi:10.1103/PhysRevLett.95.210503. http://link.aps.org/abstract/PRL/v95/e210503

    Google Scholar 

  4. Chiorescu I., Nakamura Y., Harmans C., Mooij J. (2003) Coherent quantum dynamics of a superconducting flux qubit. Science 299: 5614

    Article  Google Scholar 

  5. Plantenberg J.H., de Groot P.C., Harmans C.J.P.M., Mooij J.E. (2007) Demonstration of controllednot quantum gates on a pair of superconducting quantum bits. Nature 447: 836

    Article  ADS  Google Scholar 

  6. Saito, S., Meno, T., Ueda, M., Tanaka, H., Semba, K., Takayanagi, H.: Parametric control of a superconducting flux qubit. Phys. Rev. Lett. 96(10), 107001 (2006). doi:10.1103/PhysRevLett.96.107001. http://link.aps.org/abstract/PRL/v96/e107001

    Google Scholar 

  7. Friedman J.R., Patel V., Chen W., Tolpygo S.K., Lukens J.E. (2000) Quantum superposition of distinct macroscopic states. Nature 406: 43–46

    Article  ADS  Google Scholar 

  8. Han S., Lapointe J., Lukens J.E. (1992) Effect of a two-dimensional potential on the rate of thermally induced escape over the potential barrier. Phys. Rev. B 46(10): 6338–6345. doi:10.1103/PhysRevB.46.6338

    Article  ADS  Google Scholar 

  9. Han S., Lapointe J., Lukens J.E. (1989) Thermal activation in a two-dimensional potential. Phys. Rev. Lett. 63(16): 1712–1715. doi:10.1103/PhysRevLett.63.1712

    Article  ADS  Google Scholar 

  10. Khapaev, M., Kidiyarova-Shevchenko, A., Magnelind, P., Kupriyanov, M.: 3D-MLSI: software package for inductance calculation in multilayer superconducting integrated circuits. In: IEEE Trans. Appl. Supercond., 1090–1093 (2001)

  11. Patel V., Chen W., Pottorf S., Lukens J.E. (2005) A fast turn-around time process for fabrication of qubit circuits. IEEE Trans. Appl. Supercond. 15: 117

    Article  Google Scholar 

  12. Chen W., Patel V., Lukens J.E. (2004) Fabrication of high-quality Josephson junctions for quantum computation using a self-aligned process. Microelectron. Eng. 73–74: 767

    Article  Google Scholar 

  13. Patel V., Lukens J. (1999) Self-shunted Nb/AlO x /Nb Josephson junctions. IEEE Trans. Appl. Supercond. 9: 3247–3250

    Article  Google Scholar 

  14. Pottorf, S., Patel, V., Lukens, J.E.: Temperature dependence of critical current fluctuations in Nb/AlO x /Nb josephson junctions. arXiv:0809.3272v1 [cond-mat.supr-con] (2008)

  15. Chen W., Patel V., Tolpygo S.K., Yohannes D., Pottorf S., Lukens J.E. (2003) Development toward high-speed integrated circuits and SQUID qubits with Nb/AlO x /Nb Josephson junctions. IEEE Trans. Appl. Supercond. 13: 103

    Article  Google Scholar 

  16. Bennett, D.A.: Studies of decoherence in rf SQUIDS. PhD dissertation, Department of Physics and Astronomy, Stony Brook University (2007)

  17. Bennett D.A., Longobardi L., Patel V., Chen W., Lukens J.E. (2007) rf-squid qubit readout using a fast flux pulse. Supercond. Sci. Tech. 20(11): S445–S449

    Article  ADS  Google Scholar 

  18. Rouse R., Han S., Lukens J.E. (1995) Observation of resonant tunneling between macroscopically distinct quantum levels. Phys. Rev. Lett. 75(8): 1614–1617. doi:10.1103/PhysRevLett.75.1614

    Article  ADS  Google Scholar 

  19. Paik H., Cooper B.K., Dutta S.K., Lewis R.M., Ramos R.C., Palomaki T.A., Przybysz A.J., Dragt A.J., Anderson J.R., Lobb C.J., Wellstood F.C. (2007) Measurements of decoherence in three dc squid phase qubits. IEEE Trans. Appl. Supercond. 17(2): 120–123. doi:10.1109/TASC.2007.898124

    Article  Google Scholar 

  20. Martinis J.M., Nam S., Aumentado J., Urbina C. (2002) Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89(11): 117901. doi:10.1103/PhysRevLett.89.117901

    Article  ADS  Google Scholar 

  21. Averin D.V., Friedman J.R., Lukens J.E. (2000) Macroscopic resonant tunneling of magnetic flux. Phys. Rev. B 62(17): 11802–11811. doi:10.1103/PhysRevB.62.11802

    Article  ADS  Google Scholar 

  22. Amin, M.H.S., Averin, D.V.: Macroscopic resonant tunneling in the presence of low frequency noise. Phys. Rev. Lett. 100(19) (2008). doi:10.1103/PhysRevLett.100.197001

  23. Harris, R., Johnson, M.W., Han, S., Berkley, A.J., Johansson, J., Bunyk, P., Ladizinsky, E., Govorkov, S., Thom, M.C., Uchaikin, S., Bumble, B., Fung, A., Kaul, A., Kleinsasser, A., Amin, M.H.S., Averin, D.V.: Probing noise in flux qubits via macroscopic resonant tunneling. Phys. Rev. Lett. 101(11) (2008). doi:10.1103/PhysRevLett.101.117003

  24. Simmonds, R.W., Lang, K.M., Hite, D.A., Nam, S., Pappas, D.P., Martinis, J.M.: Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93(7), 077003 (2004). doi:10.1103/PhysRevLett.93.077003. http://link.aps.org/abstract/PRL/v93/e077003

    Google Scholar 

  25. Palomaki, T., Dutta, S.K., Lewis, R.M., Przybysz, A.J., Paik, H., Cooper, B.K., Kwon, H., Tiesinga, E., Dragt, A.J., Anerson, J.R., Lobb, C.J., Wellstood, F.C.: Measurements of decoherence in three dc squid phase qubits. In: Extended Abstracts of the 11th International Superconductive Electronics Conference (2007)

  26. Cooper, K.B., Steffen, M., McDermott, R., Simmonds, R.W., Oh, S., Hite, D.A., Pappas, D.P., Martinis, J.M.: Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. Phys. Rev. Lett. 93(18), 180401 (2004). doi:10.1103/PhysRevLett.93.180401. http://link.aps.org/abstract/PRL/v93/e180401

  27. Kopietz P., Chakravarty S. (1988) Lifetime of metastable voltage states of superconducting tunnel junctions. Phys. Rev. B 38(1): 97. doi:10.1103/PhysRevB.38.97

    Article  ADS  Google Scholar 

  28. Nakamura Y., Pashkin Y., Tsai J. (1999) Coherent control of macroscopic quantum states in a single cooper- pair box. Nature 398: 6730

    Article  Google Scholar 

  29. Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M. (2002) Manipulating the quantum state of an electrical circuit. Science 296: 886

    Article  ADS  Google Scholar 

  30. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95(6), 060501 (2005). doi:10.1103/PhysRevLett.95.060501. http://link.aps.org/abstract/PRL/v95/e060501

  31. Foglieitti V., Gallagher W., Ketchen M., Kleinsasser A., Koch R., Raider S., Sandstrom R. (1986) Low-frequency noise in low 1/f noise dc SQUIDs. Appl. Phys. Lett. 49: 1393

    Article  ADS  Google Scholar 

  32. Tesche C., Brown K., Callegari A., Chen M., Greiner J., Jones H., Ketchen M., Kim K., Kleinsasser A., Notarys H., Proto G., Wang R., Yogi T. (1985) Practical dc SQUIDs with extremely low 1/f noise. IEEE Trans. Magn. 21: 1032

    Article  ADS  Google Scholar 

  33. Wellstood F., Urbina C., Clarke J. (1987) Low-frequency noise in dc superconducting quantum interference devices below 1-K. Appl. Phys. Lett. 50: 772

    Article  ADS  Google Scholar 

  34. Yoshihara, F., Harrabi, K., Niskanen, A.O., Nakamura, Y., Tsai, J.S.: Decoherence of flux qubits due to 1/f flux noise (2006)

  35. Sendelbach S., Hover D., Kittel A., Mück M., Martinis J., McDermott R. (2008) Magnetism in SQUIDs at millikelvin temperatures. Phys. Rev. Lett. 100: 227006

    Article  ADS  Google Scholar 

  36. Koch R., DiVincenzo D., Clarke J. (2007) Model for 1/f flux noise in SQUIDs and qubits. J. Phys. Rev. Lett. 98: 267003

    Article  ADS  Google Scholar 

  37. de Sousa R. (2007) Dangling-bond spin relaxation and magnetic 1/f noise from the amorphoussemiconductor/ oxide interface: Theory. Phys. Rev. B. 76: 245306

    Article  ADS  Google Scholar 

  38. Faoro L., Ioffe L. (2008) Microscopic origin of low-frequency flux noise in josephson circuits. Phys. Rev. Lett. 100: 227006

    Article  ADS  Google Scholar 

  39. Longobardi L., Pottorf S., Patel V., Lukens J.E. (2007) Development and testing of a persistent flux bias for qubits. IEEE Trans. Appl. Supercon. 17: 88

    Article  Google Scholar 

  40. Harlingen, D.J.V., Robertson, T.L., Plourde, B.L.T., Reichardt, P.A., Crane, T.A., Clarke, J.: Decoherence in Josephson-junction qubits due to critical-current fluctuations. Phy. Rev. B (Condensed Matter and Materials Physics) 70(6), 064517 (2004). doi:10.1103/PhysRevB.70.064517. http://link.aps.org/abstract/PRB/v70/e064517

    Google Scholar 

  41. Chen W., Bennett D.A., Patel V., Lukens J.E. (2008) Substrate and process dependent losses in superconducting thin film resonators. Supercon. Sci. Tech. 21(7): 075013. doi:10.1088/0953-2048/21/7/075013

    Article  ADS  Google Scholar 

  42. Bertet, P., Chiorescu, I., Burkard, G., Semba, K., Harmans, C.J.P.M., DiVincenzo, D.P., Mooij, J.E.: Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95(25), 257002 (2005). doi:10.1103/PhysRevLett.95.257002. http://link.aps.org/abstract/PRL/v95/e257002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, D.A., Longobardi, L., Patel, V. et al. Decoherence in rf SQUID qubits. Quantum Inf Process 8, 217–243 (2009). https://doi.org/10.1007/s11128-009-0099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0099-8

Keywords

PACS

Navigation